37 research outputs found

    Effect of garlic on cardiovascular disorders: a review

    Get PDF
    Garlic and its preparations have been widely recognized as agents for prevention and treatment of cardiovascular and other metabolic diseases, atherosclerosis, hyperlipidemia, thrombosis, hypertension and diabetes. Effectiveness of garlic in cardiovascular diseases was more encouraging in experimental studies, which prompted several clinical trials. Though many clinical trials showed a positive effect of garlic on almost all cardiovascular conditions mentioned above, however a number of negative studies have recently cast doubt on the efficary of garlic specially its cholesterol lowering effect of garlic. It is a great challenge for scientists all over the world to make a proper use of garlic and enjoy its maximum beneficial effect as it is the cheapest way to prevent cardiovascular disease. This review has attempted to make a bridge the gap between experimental and clinical study and to discuss the possible mechanisms of such therapeutic actions of garlic

    Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi-center, plAcebo-controlled, Randomized, double-blINd, 12-week study with an open-label Extension [MARINE] trial)

    No full text
    AMR101 is an omega-3 fatty acid agent containing ≥96% eicosapentaenoic acid ethyl ester and no docosahexaenoic acid. Previous smaller studies suggested that highly purified eicosapentaenoic acid lowered triglyceride (TG) levels without increasing low-density lipoprotein (LDL) cholesterol levels. TG-lowering therapies such as fibrates, and fish oils containing both eicosapentaenoic acid and docosahexaenoic acid, can substantially increase LDL cholesterol levels when administered to patients with very high TG levels (≥500 mg/dl). The present double-blind study randomized 229 diet-stable patients with fasting TG ≥500 mg/dl and ≤2,000 mg/dl (with or without background statin therapy) to AMR101 4 g/day, AMR101 2 g/day, or placebo. The primary end point was the placebo-corrected median percentage of change in TG from baseline to week 12. The baseline TG level was 680, 657, and 703 mg/dl for AMR101 4 g/day, AMR101 2 g/day, and placebo. AMR101 4 g/day reduced the placebo-corrected TG levels by 33.1% (n = 76, p 750 mg/dl, AMR101 4 g/day reduced the placebo-corrected TG levels by 45.4% (n = 28, p = 0.0001) and AMR101 2 g/day by 32.9% (n = 28, p = 0.0016). AMR101 did not significantly increase the placebo-corrected median LDL cholesterol levels at 4 g/day (-2.3%) or 2 g/day (+5.2%; both p = NS). AMR101 significantly reduced non-high-density lipoprotein cholesterol, apolipoprotein B, lipoprotein-associated phospholipase A(2), very low-density lipoprotein cholesterol, and total cholesterol. AMR101 was generally well tolerated, with a safety profile similar to that of the placebo. In conclusion, the present randomized, double-blind trial of patients with very high TG levels demonstrated that AMR101 significantly reduced the TG levels and improved other lipid parameters without significantly increasing the LDL cholesterol level

    Efficacy and Safety of Eicosapentaenoic Acid Ethyl Ester (AMR101) Therapy in Statin-Treated Patients With Persistent High Triglycerides (from the ANCHOR Study)

    No full text
    AMR101 is an omega-3 fatty acid agent containing >= 96% pure icosapent-ethyl, the ethyl ester of eicosapentaenoic acid. The efficacy and safety of AMR101 were evaluated in this phase 3, multicenter, placebo-controlled, randomized, double-blinded, 12-week clinical trial (ANCHOR) in high-risk statin-treated patients with residually high triglyceride (TG) levels (>= 200 and = 40 and <100 mg/dl). Patients (n = 702) on a stable diet were randomized to AMR101 4 or 2 g/day or placebo. The primary end point was median percent change in TG levels from baseline versus placebo at 12 weeks. AMR101 4 and 2 g/day significantly decreased TG levels by 21.5% (p <0.0001) and 10.1% (p = 0.0005), respectively, and non-high-density lipoprotein (non-FIDL) cholesterol by 13.6% (p <0.0001) and 5.5% (p = 0.0054), respectively. AMR101 4 g/day produced greater TG and non-HDL cholesterol decreases in patients with higher-efficacy statin regimens and greater TG decreases in patients with higher baseline TG levels. AMR101 4 g/day decreased LDL cholesterol by 6.2% (p = 0.0067) and decreased apolipoprotein B (9.3%), total cholesterol (12.0%), very-low-density lipoprotein cholesterol (24.4%), lipoprotein-associated phospholipase A(2) (19.0%), and high-sensitivity C-reactive protein (22.0%) versus placebo (p <0.001 for all comparisons). AMR101 was generally well tolerated, with safety profiles similar to placebo. In conclusion, AMR101 4 g/day significantly decreased median placebo-adjusted TG, non-HDL cholesterol, LDL cholesterol, apolipoprotein B, total cholesterol, very-low-density lipoprotein cholesterol, lipoprotein-associated phospholipase A2, and high-sensitivity C-reactive protein in statin-treated patients with residual TG elevations. (C) 2012 Elsevier Inc. All rights reserved. (Am J Cardiol 2012;110:984-992
    corecore