53 research outputs found

    Book Reviews

    Get PDF

    CT features of pulmonary arterial hypertension and its major subtypes: a systematic CT evaluation of 292 patients from the ASPIRE Registry

    Get PDF
    We evaluated the prevalence and prognostic value of CT-pulmonary angiographic (CTPA) measures in 292 treatment naive patients with pulmonary arterial hypertension (PAH). Pulmonary artery calcification (13%) and thrombus (10%) were exclusively seen in PAH-congenital heart disease. Oesophageal dilation (46%) was most frequent in PAH-systemic sclerosis. Ground glass opacification (GGO) (41%), pericardial effusion (38%), lymphadenopathy (19%) and pleural effusion (11%) were common. On multivariate analysis, inferior vena caval area, the presence of pleural effusion and septal lines predicted outcome. In PAH, CTPA provides diagnostic and prognostic information. In addition, the presence of GGO on a CT performed for unexplained breathlessness should alert the physician to the possibility of PAH

    McKesson & Robbins case

    Get PDF
    https://egrove.olemiss.edu/aicpa_comm/1187/thumbnail.jp

    Dynamic contrast-enhanced magnetic resonance imaging in patients with pulmonary arterial hypertension.

    Get PDF
    Dynamic contrast-enhanced (DCE) time-resolved magnetic resonance (MR) imaging is a technique whereby the passage of an intravenous contrast bolus can be tracked through the pulmonary vascular system. The aim of this study was to investigate the prognostic significance of DCE-MR pulmonary blood transit times in patients with pulmonary arterial hypertension (PAH). Seventy-nine patients diagnosed with PAH underwent pulmonary DCE imaging at 1.5 T using a time-resolved three-dimensional spoiled gradient echo sequence. The prognostic significance of two DCE parameters, full width at half maximum (FWHM) of the first-pass clearance curve and pulmonary transit time (PTT), along with demographic and invasive catheter measurements, was evaluated by univariate and bivariate Cox proportional hazards regression and Kaplan-Meier analysis. DCE-MR transit times were most closely correlated with cardiac index (CI) and pulmonary vascular resistance index (PVRI) and were both found to be accurate for detecting reduced CI (FWHM area under the curve [AUC] at receiver operating characteristic analysis = 0.91 and PTT AUC = 0.92, respectively) and for detecting elevated PVRI (FWHM AUC = 0.88 and PTT AUC = 0.84, respectively). During the follow-up period, 25 patients died. Patients with longer measurements of FWHM (P = 0.0014) and PTT (P = 0.004) were associated with poor outcome at Kaplan-Meier analysis, and both parameters were strong predictors of adverse outcome from Cox proportional hazards analysis (P = 0.013 and 0.010, respectively). At bivariate analysis, DCE measurements predicted mortality independent of age, gender, and World Health Organization functional class; however, invasive hemodynamic indexes CI, PVRI, and DCE measurements were not independent of one another. In conclusion, DCE-MR transit times predict mortality in patients with PAH and are closely associated with clinical gold standards CI and PVRI
    corecore