67 research outputs found

    Global Optimization by Adiabatic Switching

    Get PDF
    We apply a recently introduced method for global optimization to determine the ground state energy and configuration for model metallic clusters. The global minimum for a given N-atom cluster is found by following the damped dynamics of the N particle system on an evolving potential energy surface. In this application, the time dependent interatomic potential interpolates adiabatically between the Lennard-Jones (LJ) and the Sutton-Chen (SC) forms. Starting with an ensemble of initial conditions corresponding to the ground state configuration of the Lennard-Jones cluster, the system asymptotically reaches the ground state of the Sutton-Chen cluster. We describe the method and present results for specific cluster size N=15, when the ground state symmetry of LJN_N and SCN_N differ

    Global Optimization on an Evolving Energy Landscape

    Get PDF
    Locating the global minimum of a complex potential energy surface is facilitated by considering a homotopy, namely a family of surfaces that interpolate continuously from an arbitrary initial potential to the system under consideration. Different strategies can be used to follow the evolving minima. It is possible to enhance the probability of locating the global minimum through a heuristic choice of interpolation schemes and parameters, and the continuously evolving potential landscape reduces the probability of trapping in local minima. In application to a model problem, finding the ground--state configuration and energy of rare--gas (Lennard--Jones) atomic clusters, we demonstrate the utility and efficacy of this method

    Body composition in anorexia nervosa: Meta-analysis and meta-regression of cross-sectional and longitudinal studies

    Get PDF
    Objective: Clinically, anorexia nervosa (AN) presents with altered body composition. We quantified these alterations and evaluated their relationships with metabolites and hormones in patients with AN longitudinally. Method: In accordance with PRISMA guidelines, we conducted 94 meta-analyses on 62 samples published during 1996–2019, comparing up to 2,319 pretreatment, posttreatment, and weight-recovered female patients with AN with up to 1,879 controls. Primary outcomes were fat mass, fat-free mass, body fat percentage, and their regional distribution. Secondary outcomes were bone mineral density, metabolites, and hormones. Meta-regressions examined relationships among those measures and moderators. Results: Pretreatment female patients with AN evidenced 50% lower fat mass (mean difference [MD]: −8.80 kg, 95% CI: −9.81, −7.79, Q = 1.01 × 10−63) and 4.98 kg (95% CI: −5.85, −4.12, Q = 1.99 × 10−28) lower fat-free mass, with fat mass preferentially stored in the trunk region during early weight restoration (4.2%, 95% CI: −2.1, −6.2, Q = 2.30 × 10−4). While the majority of traits returned to levels seen in healthy controls after weight restoration, fat-free mass (MD: −1.27 kg, 95% CI: −1.79, −0.75, Q = 5.49 × 10−6) and bone mineral density (MD: −0.10 kg, 95% CI: −0.18, −0.03, Q = 0.01) remained significantly altered. Discussion: Body composition is markedly altered in AN, warranting research into these phenotypes as clinical risk or relapse predictors. Notably, the long-term altered levels of fat-free mass and bone mineral density suggest that these parameters should be investigated as potential AN trait markers

    Expression of a hindlimb-determining factor Pitx1 in the forelimb of the lizard Pogona vitticeps during morphogenesis

    Get PDF
    With over 9000 species, squamates, which include lizards and snakes, are the largest group of reptiles and second-largest order of vertebrates, spanning a vast array of appendicular skeletal morphology. As such, they provide a promising system for examining developmental and molecular processes underlying limb morphology. Using the central bearded dragon (Pogona vitticeps) as the primary study model, we examined limb morphometry throughout embryonic development and characterized the expression of three known developmental genes (GHR, Pitx1 and Shh) from early embryonic stage through to hatchling stage via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). In this study, all genes were found to be transcribed in both the forelimbs and hindlimbs of P. vitticeps. While the highest level of GHR expression occurred at the hatchling stage, Pitx1 and Shh expression was greatest earlier during embryogenesis, which coincides with the onset of the differentiation between forelimb and hindlimb length. We compared our finding of Pitx1 expression-a hindlimb-determining gene-in the forelimbs of P. vitticeps to that in a closely related Australian agamid lizard, Ctenophorus pictus, where we found Pitx1 expression to be more highly expressed in the hindlimb compared with the forelimb during early and late morphogenesis-a result consistent with that found across other tetrapods. Expression of Pitx1 in forelimbs has only rarely been documented, including via in situ hybridization in a chicken and a frog. Our findings from both RT-qPCR and IHC indicate that further research across a wider range of tetrapods is needed to more fully understand evolutionary variation in molecular processes underlying limb morphology.Jane Melville, Sumitha Hunjan, Felicity McLean, Georgia Mantziou, Katja Boysen and Laura J. Parr

    Performance of [(18)F]flutemetamol amyloid imaging against the neuritic plaque component of CERAD and the current (2012) NIA-AA recommendations for the neuropathologic diagnosis of Alzheimer's disease

    Get PDF
    INTRODUCTION: Performance of the amyloid tracer [(18)F]flutemetamol was evaluated against three pathology standard of truth (SoT) measures including neuritic plaques (CERAD "original" and "modified" and the amyloid component of the 2012 NIA-AA guidelines). METHODS: After [(18)F]flutemetamol imaging, 106 end-of-life patients who died underwent postmortem brain examination for amyloid plaque load. Blinded positron emission tomography scan interpretations by five independent electronically trained readers were compared with pathology measures. RESULTS: By SoT, sensitivity and specificity of majority image interpretations were, respectively, 91.9% and 87.5% with "original CERAD," 90.8% and 90.0% with "modified CERAD," and 85.7% and 100% with the 2012 NIA-AA criteria. DISCUSSION: The high accuracy of either CERAD criteria suggests that [(18)F]flutemetamol predominantly reflects neuritic amyloid plaque density. However, the use of CERAD criteria as the SoT can result in some false-positive results because of the presence of diffuse plaques, which are accounted for when the positron emission tomography read is compared with the 2012 NIA-AA criteria

    ‘Test n Treat (TnT)’– Rapid testing and same-day, on-site treatment to reduce rates of chlamydia in sexually active further education college students: study protocol for a cluster randomised feasibility trial

    Get PDF
    Background Sexually active young people attending London further education (FE) colleges have high rates of chlamydia, but screening rates are low. We will conduct a cluster randomised feasibility trial of frequent, rapid, on-site chlamydia testing and same-day treatment (Test and Treat (TnT)) in six FE colleges (with parallel qualitative and economic assessments) to assess the feasibility of conducting a future trial to investigate if TnT reduces chlamydia rates. Methods We will recruit 80 sexually active students aged 16–24 years from public areas at each of six colleges. All participants (total n = 480) will be asked to provide samples (urine for males, self-taken vaginal swabs for females) and complete questionnaires on sexual lifestyle and healthcare use at baseline and after 7 months. Participants will be informed that baseline samples will not be tested for 7 months and be advised to get screened separately. Colleges will be randomly allocated to the intervention (TnT) or the control group (no TnT). One and 4 months after recruitment, participants at each intervention college (n = 3) will be texted and invited for on-site chlamydia tests using the 90-min Cepheid GeneXpert system. Students with positive results will be asked to see a visiting nurse health adviser for same-day treatment and partner notification, (backed by genitourinary medicine follow-up). Participants in control colleges (n = 3) will receive ‘thank you’ texts 1 and 4 months after recruitment. Seven months after recruitment, participants from both groups will be invited to complete questionnaires and provide samples for TnT. All samples will be tested, and same-day treatment offered to students with positive results. Acceptability of TnT will be assessed by qualitative interviews of purposively sampled students (n = 30) and college staff (n = 12). We will collect data on costs of TnT and usual healthcare. Discussion Findings will provide key values to inform feasibility, sample size and timescales of a future definitive trial of TnT in FE colleges, including: Recruitment rates TnT uptake rates Follow-up rates Prevalence of chlamydia in participants at baseline and 7 months Acceptability of TnT to students and college staff Estimate of the cost per person screened/treated in TnT versus usual care Trial registration International Standard Randomised Controlled Trials Registry, ID: ISRCTN58038795, Registered on 31 August 2016

    Health inequalities, fundamental causes and power:Towards the practice of good theory

    Get PDF
    Reducing health inequalities remains a challenge for policy makers across the world. Beginning from Lewin’s famous dictum that “there is nothing as practical as a good theory”, this paper begins from an appreciative discussion of ‘fundamental cause theory’, emphasizing the elegance of its theoretical encapsulation of the challenge, the relevance of its critical focus for action, and its potential to support the practical mobilisation of knowledge in generating change. Moreover, it is argued that recent developments in the theory, provide an opportunity for further theoretical development focused more clearly on the concept of power (Dickie et al. 2015). A critical focus on power as the essential element in maintaining, increasing or reducing social and economic inequalities – including health inequalities – can both enhance the coherence of the theory, and also enhance the capacity to challenge the roots of health inequalities at different levels and scales. This paper provides an initial contribution by proposing a framework to help to identify the most important sources, forms and positions of power, as well as the social spaces in which they operate. Subsequent work could usefully test, elaborate and adapt this framework, or indeed ultimately replace it with something better, to help focus actions to reduce inequalities

    Accuracy of Protein-Protein Binding Sites in High-Throughput Template-Based Modeling

    Get PDF
    The accuracy of protein structures, particularly their binding sites, is essential for the success of modeling protein complexes. Computationally inexpensive methodology is required for genome-wide modeling of such structures. For systematic evaluation of potential accuracy in high-throughput modeling of binding sites, a statistical analysis of target-template sequence alignments was performed for a representative set of protein complexes. For most of the complexes, alignments containing all residues of the interface were found. The full interface alignments were obtained even in the case of poor alignments where a relatively small part of the target sequence (as low as 40%) aligned to the template sequence, with a low overall alignment identity (<30%). Although such poor overall alignments might be considered inadequate for modeling of whole proteins, the alignment of the interfaces was strong enough for docking. In the set of homology models built on these alignments, one third of those ranked 1 by a simple sequence identity criteria had RMSD<5 Å, the accuracy suitable for low-resolution template free docking. Such models corresponded to multi-domain target proteins, whereas for single-domain proteins the best models had 5 Å<RMSD<10 Å, the accuracy suitable for less sensitive structure-alignment methods. Overall, ∼50% of complexes with the interfaces modeled by high-throughput techniques had accuracy suitable for meaningful docking experiments. This percentage will grow with the increasing availability of co-crystallized protein-protein complexes
    corecore