39 research outputs found

    Fruit fly bioassay to distinguish "sweet" sugar structures

    No full text
    Palatable response to dietary sugars plays a significant role in influencing metabolic health. New structures are being explored with beneficial health properties, although consumer acceptance relies heavily on desirable sensory properties. Despite the importance of behavioral responses, the ability to elucidate structure-preference relationships of sugars is lacking. A wild population of Drosophila melanogaster was used as a model to perform pairwise comparisons across structural groups to characterize a fruit fly bioassay for assessing sugar preference. Preference was successfully described in structurally relevant terms, particularly through the ability to directly test sugars of related structures in addition to standard sucrose comparisons. The fruit fly bioassay also provided the first report on the relative preference for the β-linked sugar alcohol, gentiobiitol. In making reference to well-known human preferences, the bioassay also raises opportunities for greater understanding of behavioral response to sugar structures in general

    Glycosylation profiles of epitope-specific anti-β-amyloid antibodies revealed by liquid chromatography–mass spectrometry

    No full text
    Alzheimer's disease (AD) is the most prevalent form of age-related neurodementia. The accumulation of β-amyloid polypeptide (Aβ) in brain is generally believed to be a key event in AD. The recent discovery of physiological β-amyloid autoantibodies represents a promising perspective for treatment and early diagnosis of AD. The mechanisms by which natural β-amyloid autoantibodies prevent neurodegeneration are currently unknown. The aim of the present study was to analyze the N-linked glycosylation of a plaque-specific, monoclonal antibody (clone 6E10) relevant for immunotherapy of AD, in comparison with the glycosylation pattern of an Aβ autoantibody isolated from an IgG source. Liquid chromatography in combination with tandem mass spectrometry was used to analyze the glycopeptides generated by enzymatic degradation of the antibodies reduced and alkylated heavy chains. The oligosaccharide pattern of the 6E10 antibody shows primarily core-fucosylated biantennary complex structures and, to a low extent, tri- and tetragalactosyl glycoforms, with or without terminal sialic acids. The glycans associated with the serum anti-Aβ autoantibodies are of the complex, biantennary-type, fucosylated at the first N-acetyl glucosamine residue of the trimannosyl chitobiose core and contain zero to two galactose residues, and zero to one terminal sialic acid, with or without bisecting N-acetyl glucosamine. Glycosylation analysis of the Aβ-autoantibody performed at the peptide level revealed all four human IgG subclasses, with IgG1 and IgG2 as the dominant subclasses
    corecore