6,189 research outputs found
On the Equivalence of Cellular Automata and the Tile Assembly Model
In this paper, we explore relationships between two models of systems which
are governed by only the local interactions of large collections of simple
components: cellular automata (CA) and the abstract Tile Assembly Model (aTAM).
While sharing several similarities, the models have fundamental differences,
most notably the dynamic nature of CA (in which every cell location is allowed
to change state an infinite number of times) versus the static nature of the
aTAM (in which tiles are static components that can never change or be removed
once they attach to a growing assembly). We work with 2-dimensional systems in
both models, and for our results we first define what it means for CA systems
to simulate aTAM systems, and then for aTAM systems to simulate CA systems. We
use notions of simulate which are similar to those used in the study of
intrinsic universality since they are in some sense strict, but also
intuitively natural notions of simulation. We then demonstrate a particular
nondeterministic CA which can be configured so that it can simulate any
arbitrary aTAM system, and finally an aTAM tile set which can be configured so
that it can be used to simulate any arbitrary nondeterministic CA system which
begins with a finite initial configuration.Comment: In Proceedings MCU 2013, arXiv:1309.104
High-temperature Adhesive Development and Evaluation
High-temperature adhesive systems are evaluated for short and long-term stability at temperatures ranging from 232C to 427C. The resins selected for characterization include: NASA Langley developed polyphenylquinoxaline (PPQ), and commercially available polyimides (PI). The primary method of bond testing is single lap shear. The PPQ candidates are evaluated on 6A1-4V titanium adherends with chromic acid anodize and phosphate fluoride etch surface preparations. The remaining adhesives are evaluated on 15-5 PH stainless steel with a sulfuric acid anodize surface preparation. Preliminary data indicate that the PPQ adhesives tested have stability to 3000 hours at 450F with chromic acid anodize surface preparation. Additional studies are continuing to attempt to improve the PPQ's high-performance by formulating adhesive films with a boron filler and utilizing the phosphate fluoride surface preparation on titanium. Evaluation of the polyimide candidates on stainless-steel adherends indicates that the FM-35 (American Cyanamid), PMR-15 (U.S. Polymeric/Ferro), TRW partially fluorinated polyimide and NR 150B2S6X (DuPont) adhesives show sufficient promise to justify additional testing
Two phase choke flow in tubes with very large L/D
Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low
GASPLOT - A computer graphics program that draws a variety of thermophysical property charts
A FORTRAN V computer program, written for the UNIVAC 1100 series, is used to draw a variety of precision thermophysical property charts on the Calcomp plotter. In addition to the program (GASPLOT), which requires (15 160) sub 10 storages, a thermophysical properties routine needed to produce plots. The program is designed so that any two of the state variables, the derived variables, or the transport variables may be plotted as the ordinate - abscissa pair with as many as five parametric variables. The parameters may be temperature, pressure, density, enthalpy, and entropy. Each parameter may have as many a 49 values, and the range of the variables is limited only by the thermophysical properties routine
Superconducting gyroscope research
Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture
Two-phase choked flow of cryogenic fluids in converging-diverging nozzles
Data are presented for the two phase choked flow of three cryogenic fluids - nitrogen, methane, and hydrogen - in four converging-diverging nozzles. The data cover a range of inlet stagnation conditions, all single phase, from well below to well above the thermodynamic critical conditions. In almost all cases the nozzle throat conditions were two phase. The results indicate that the choked flow rates were not very sensitive to nozzle geometry. However, the axial pressure profiles, especially the throat pressure and the point of vaporization, were very sensitive to both nozzle geometry and operating conditions. A modified Henry-Fauske model correlated all the choked flow rate data to within + or - 10 percent. Neither the equilibrium model nor the Henry-Fauske model predicted throat pressures well over the whole range of data. Above the thermodynamic critical temperature the homogeneous equilibrium model was preferred for both flow rate and pressure ratio. The data of the three fluids could be normalized by the principle of corresponding states
Infrared telescope
The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described
Some flow phenomena in a constant area duct with a Borda type inlet including the critical region
Mass limiting flow characteristics for a 55 L/D tube with a Borda type inlet were assessed over large ranges of temperature and pressure, using fluid nitrogen. Under certain conditions, separation and pressure drop at the inlet was sufficiently strong to permit partial vaporization and the remaining fluid flowed through the tube as if it were a free jet. An empirical relation was determined which defines conditions under which this type of flow can occur. A flow coefficient is presented which enables estimations of flow rates over the experimental range. A flow rate stagnation pressure map for selected stagnation isotherms and pressure profiles document these flow phenomena
- …