19 research outputs found

    Morbidity and mortality after anaesthesia in early life: results of the European prospective multicentre observational study, neonate and children audit of anaesthesia practice in Europe (NECTARINE)

    Get PDF
    Background: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown. Methods: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention. The secondary aims were to evaluate morbidities, mortality at 30 and 90 days, or both, and associations with critical events. Results: Infants (n=5609) born at mean (standard deviation [SD]) 36.2 (4.4) weeks postmenstrual age (35.7% preterm) underwent 6542 procedures within 63 (48) days of birth. Critical event(s) requiring intervention occurred in 35.2% of cases, mainly hypotension (>30% decrease in blood pressure) or reduced oxygenation (SpO2 <85%). Postmenstrual age influenced the incidence and thresholds for intervention. Risk of critical events was increased by prior neonatal medical conditions, congenital anomalies, or both (relative risk [RR]=1.16; 95% confidence interval [CI], 1.04–1.28) and in those requiring preoperative intensive support (RR=1.27; 95% CI, 1.15–1.41). Additional complications occurred in 16.3% of patients by 30 days, and overall 90-day mortality was 3.2% (95% CI, 2.7–3.7%). Co-occurrence of intraoperative hypotension, hypoxaemia, and anaemia was associated with increased risk of morbidity (RR=3.56; 95% CI, 1.64–7.71) and mortality (RR=19.80; 95% CI, 5.87–66.7). Conclusions: Variability in physiological thresholds that triggered an intervention, and the impact of poor tissue oxygenation on patient's outcome, highlight the need for more standardised perioperative management guidelines for neonates and infants. Clinical trial registration: NCT02350348

    Morbidity and mortality after anaesthesia in early life: results of the European prospective multicentre observational study, neonate and children audit of anaesthesia practice in Europe (NECTARINE)

    Get PDF
    BACKGROUND: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown. METHODS: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention. The secondary aims were to evaluate morbidities, mortality at 30 and 90 days, or both, and associations with critical events. RESULTS: Infants (n=5609) born at mean (standard deviation [sd]) 36.2 (4.4) weeks postmenstrual age (35.7% preterm) underwent 6542 procedures within 63 (48) days of birth. Critical event(s) requiring intervention occurred in 35.2% of cases, mainly hypotension (>30% decrease in blood pressure) or reduced oxygenation (SpO2 <85%). Postmenstrual age influenced the incidence and thresholds for intervention. Risk of critical events was increased by prior neonatal medical conditions, congenital anomalies, or both (relative risk [RR]=1.16; 95% confidence interval [CI], 1.04–1.28) and in those requiring preoperative intensive support (RR=1.27; 95% CI, 1.15–1.41). Additional complications occurred in 16.3% of patients by 30 days, and overall 90-day mortality was 3.2% (95% CI, 2.7–3.7%). Co-occurrence of intraoperative hypotension, hypoxaemia, and anaemia was associated with increased risk of morbidity (RR=3.56; 95% CI, 1.64–7.71) and mortality (RR=19.80; 95% CI, 5.87–66.7). CONCLUSIONS: Variability in physiological thresholds that triggered an intervention, and the impact of poor tissue oxygenation on patient's outcome, highlight the need for more standardised perioperative management guidelines for neonates and infants

    On the optimisation of the mechanical properties of two aluminium-alloyed multiphase TRIP-assisted steels

    Full text link
    peer reviewedAluminium-alloyed multiphase TRIP-assisted steels have been recently developed, so as to get rid of the disdavantages related to the high silicon contents classically used so far in TRIP-assisted steels. It has been shown that aluminium has a stronger ferritising effect than silicon and that it is slightly less efficient as far as austenite retention is concerned. A careful selection of the aluminium content and of the processing conditions is thus of primary importance in order to optimise the mechanical properties. The present study aims at determining the optimal heat treatment conditions leading to enhanced mechanical properties for two low aluminium-alloyed grades containing with mass contents of 0.12% C, 1.5% Mn and 0.5% Al or 1.0% Al, respectively. The microstructures generated during the heat treatment were assessed using SEM, X-ray diffraction and Mössbauer spectrometry. The mechanical properties were evaluated by uniaxial tensilte testing and the strain-hardening behaviour was characterised by means of an incremental strain-hardening exponent. The relations between the observed microstructures and the mechanical properties were discussed and, as a consequence, the importance of a careful control of the isothermal bainitic holding was highlighted

    Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels

    No full text
    Classical etching techniques used for the investigation of steel microstructures allow the simultaneous observation of only a restricted number of phases. So far, this limitation has not been too detrimental, because most low-carbon steel grades possess a quite simple microstructure. The recent interest in the so-called TRIP-assisted multiphase steels characterized by complex microstructures requires new developments in metallographic methods. This paper proposes an extension of already known techniques to allow the study of four kinds of TRIP-aided steels. The actual restrictions justifying the development of an improved method are emphasized. in spite of its simplicity, the procedure has; the advantage of allowing the simultaneous observation of the four phases that generally compose the microstructure of TRIP-assisted steels; that is, ferrite, bainite, austenite, and martensite. Light and electron microscopy as well as diffraction techniques are used to demonstrate the interest of the method. (C) Elsevier Science Inc., 1998

    Enhancement of the mechanical properties of a low-carbon, low-silicon steel by formation of a multiphased microstructure containing retained austenite

    No full text
    Dual-phase and transformation-induced plasticity (TRIP)-assisted multiphase steels are related families of high-strength formable steels exhibiting excellent mechanical characteristics. This study shows how a ferrite-bainite-martensite microstructure containing retained austenite can improve the mechanical properties of a cold-rolled low-carbon, low-silicon steel. Such a multiphased microstructure is obtained by a heat treatment involving intercritical annealing followed by a bainite transformation tempering. Depending on the heat-treatment parameters, the samples present a variety of microstructures. Due to the presence of retained austenite, some samples exhibit a TRIP effect not anticipated with such a low silicon content. A composite strengthening effect also results from the simultaneous presence of a ductile ferrite matrix with bainite and martensite as hard second phases. A true stress at maximum load of 800 MPa and a true uniform strain of 0.18 can be obtained by forming a ferrite-bainite-martensite microstructure containing up to 10 pct of retained austenite. These properties correspond to a favorable evolution of work hardening during plastic deformation
    corecore