802 research outputs found

    Public Interest Organizations

    Get PDF

    Public Interest Organizations

    Get PDF

    Lidar cloud studies for FIRE and ECLIPS

    Get PDF
    Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across

    Analysis of testbed airborne multispectral scanner data from Superflux II

    Get PDF
    A test bed aircraft multispectral scanner (TBAMS) was flown during the James Shelf, Plume Scan, and Chesapeake Bay missions as part of the Superflux 2 experiment. Excellent correlations were obtained between water sample measurements of chlorophyll and sediment and TBAMS radiance data. The three-band algorithms used were insensitive to aircraft altitude and varying atmospheric conditions. This was particularly fortunate due to the hazy conditions during most of the experiments. A contour map of sediment, and also chlorophyll, was derived for the Chesapeake Bay plume along the southern Virginia-Carolina coastline. A sediment maximum occurs about 5 nautical miles off the Virginia Beach coast with a chlorophyll maximum slightly shoreward of this. During the James Shelf mission, a thermal anomaly (or front) was encountered about 50 miles from the coast. There was a minor variation in chlorophyll and sediment across the boundary. During the Chesapeake Bay mission, the Sun elevation increased from 50 degrees to over 70 degrees, interfering with the generation of data products

    Remote sensing of sediment and chlorophyll with the test-bed aircraft multispectral scanner

    Get PDF
    An instrument known as the test-bed aircraft multispectral scanner (TBAMS) was used in a research flight over the entrance to the Chesapeake Bay. Upwelled radiances from the TBAMS data were correlated with the water parameters, particularly sediment and chlorophyll a. Several algorithms were demonstrated for monitoring sediment and chlorophyll, with a three-band ratio being the best. The primary advantage of the three-band ratio was found to be its apparent insensitivity to atmospheric and Sun-angle variations

    Nonlinear multi-state tunneling dynamics in a spinor Bose-Einstein condensate

    Full text link
    We present an experimental realization of dynamic self-trapping and non-exponential tunneling in a multi-state system consisting of ultracold sodium spinor gases confined in moving optical lattices. Taking advantage of the fact that the tunneling process in the sodium spinor system is resolvable over a broader dynamic energy scale than previously observed in rubidium scalar gases, we demonstrate that the tunneling dynamics in the multi-state system strongly depends on an interaction induced nonlinearity and is influenced by the spin degree of freedom under certain conditions. We develop a rigorous multi-state tunneling model to describe the observed dynamics. Combined with our recent observation of spatially-manipulated spin dynamics, these results open up prospects for alternative multi-state ramps and state transfer protocols
    • …
    corecore