620 research outputs found

    Rockfish size and age: The crossroads of spatial protection, central place fisheries and indigenous rights

    Get PDF
    AbstractIndigenous people harvest wild species for food and cultural practice, fundamentally linking biodiversity conservation and indigenous rights. Rockfishes (Sebastes spp.) are culturally significant to indigenous people (or First Nations) of coastal British Columbia (BC), Canada, who regulate their harvest under traditional governance structures. First Nations elders, however, have observed a decline in the body sizes and abundance of rockfishes, which coincides with increased exploitation by non-indigenous fishers. Rockfishes are vulnerable to overexploitation because fecundity and offspring quality increase with maternal size or age, yet fisheries truncate size and age structure. During 2006, 2007 and 2013–2015, we worked with the Wuikinuxv, Nuxalk, Heiltsuk and Kitasoo/Xai’Xais First Nations of BC’s Central Coast, examining rockfish population characteristics at 282 of their fishing sites. We used hook-and-line gear to collect fishery independent data, and sampled landings from First Nations subsistence fishers. Spatial fishery closures served as experimental treatments. We also applied central place foraging theory to predict declines in size, age and abundance with increasing distance from recreational fishing lodges and other ports. Analyses used linear mixed models and controlled for environmental variables. Our results suggest that spatial closures for commercial and recreational fishers led to greater size and abundance of some, but not all rockfishes, possibly due to interspecific differences in the extent to which closures contain suitable habitat, effects of non-compliance, or other factors. Notably, Yelloweye Rockfish (Sebastes ruberrimus), a species key to indigenous diets, were 21% larger inside than outside spatial closures. Possibly reflecting cumulative fishery exploitation, however, old-aged Yelloweye Rockfish were rare. Fishery impacts on size and relative abundance decreased at sites that required longer travel times and greater fuel costs for recreational fishers to exploit, but only for the longest-lived species (size responses) and for long-lived species analysed in aggregate (abundance responses). Measures for protecting indigenous access to rockfishes include evaluation of habitat suitability and compliance within spatial closures, improved understanding of recreational fishery impacts, and treating old-age and large size structures as explicit management objectives. Our study contributes to a global effort to integrate indigenous cultural values with biological conservation

    Serially coupling hydrophobic interaction and reversed-phase chromatography with simultaneous gradients provides greater coverage of the metabolome

    Get PDF
    The serial coupling of a reversed-phase liquid chromatography (RPLC) column to a hydrophilic interaction liquid chromatography (HILIC) column has been developed in recent years for the detection of polar and nonpolar metabolites. TCA intermediates, bile acid standards and numerous polar and non-polar metabolites extracted from beer were analysed using a combined RPLC/HILIC method. Non-polar metabolites were retained by the RPLC column. Polar metabolites not retained by the RPLC column were retained and separated by the HILIC column. The results from this study validate this simple yet powerful metabolomics approach

    Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus.

    Get PDF
    HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4. C34-conjugated coreceptors were expressed on the surface of T cell lines and primary CD4 T cells, retained the ability to mediate chemotaxis in response to cognate chemokines, and were highly resistant to HIV-1 utilization for entry. Notably, C34-conjugated CCR5 and CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates). This inhibition was highly specific and dependent on positioning of the peptide, as HIV-1 infection was poorly inhibited when C34 was conjugated to the amino terminus of CD4. C34-conjugated coreceptors could also inhibit HIV-1 isolates that were resistant to the soluble HR2 peptide inhibitor, enfuvirtide. When introduced into primary cells, CD4 T cells expressing C34-conjugated coreceptors exhibited physiologic responses to T cell activation while inhibiting diverse HIV-1 isolates, and cells containing C34-conjugated CXCR4 expanded during HIV-1 infection in vitro and in a humanized mouse model. Notably, the C34-conjugated peptide exerted greater HIV-1 inhibition when conjugated to CXCR4 than to CCR5. Thus, antiviral effects of HR2 peptides can be specifically directed to the site of viral entry where they provide potent and broad inhibition of HIV-1. This approach to engineer HIV-1 resistance in functional CD4 T cells may provide a novel cell-based therapeutic for controlling HIV infection in humans

    Revealing Complex Traits with Small Molecules and Naturally Recombinant Yeast Strains

    Get PDF
    SummaryHere we demonstrate that natural variants of the yeast Saccharomyces cerevisiae are a model system for the systematic study of complex traits, specifically the response to small molecules. As a complement to artificial knockout collections of S. cerevisiae widely used to study individual gene function, we used 314- and 1932-member libraries of mutant strains generated by meiotic recombination to study the cumulative, quantitative effects of natural mutations on phenotypes induced by 23 small-molecule perturbagens (SMPs). This approach reveals synthetic lethality between SMPs, and genetic mapping studies confirm the involvement of multiple quantitative trait loci in the response to two SMPs that affect respiratory processes. The systematic combination of natural variants of yeast and small molecules that modulate evolutionarily conserved cellular processes can enable a better understanding of the general features of complex traits

    Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability

    Get PDF
    Frontotemporal dementia (FTD) and other tauopathies characterized by focal brain neurodegeneration and pathological accumulation of proteins are commonly associated with tau mutations. However, the mechanism of neuronal loss is not fully understood. To identify molecular events associated with tauopathy, we studied induced pluripotent stem cell (iPSC)-derived neurons from individuals carrying the tau-A152T variant. We highlight the potential of in-depth phenotyping of human neuronal cell models for pre-clinical studies and identification of modulators of endogenous tau toxicity. Through a panel of biochemical and cellular assays, A152T neurons showed accumulation, redistribution, and decreased solubility of tau. Upregulation of tau was coupled to enhanced stress-inducible markers and cell vulnerability to proteotoxic, excitotoxic, and mitochondrial stressors, which was rescued upon CRISPR/Cas9-mediated targeting of tau or by pharmacological activation of autophagy. Our findings unmask tau-mediated perturbations of specific pathways associated with neuronal vulnerability, revealing potential early disease biomarkers and therapeutic targets for FTD and other tauopathies

    A High-Throughput Screen for Wnt/β-Catenin Signaling Pathway Modulators in Human iPSC-Derived Neural Progenitors

    Get PDF
    Wnt/β-catenin signaling has emerged as a central player in pathways implicated in the pathophysiology and treatment of neuropsychiatric disorders. To identify potential novel therapeutics for these disorders, high-throughput screening (HTS) assays reporting on Wnt/β-catenin signaling in disease-relevant contexts are needed. The use of human patient–derived induced pluripotent stem cell (iPSC) models provides ideal disease-relevant context if these stem cell cultures can be adapted for HTS-compatible formats. Here, we describe a sensitive, HTS-compatible Wnt/β-catenin signaling reporter system generated in homogeneous, expandable neural progenitor cells (NPCs) derived from human iPSCs. We validated this system by demonstrating dose-responsive stimulation by several known Wnt/β-catenin signaling pathway modulators, including Wnt3a, a glycogen synthase kinase-3 (GSK3) inhibitor, and the bipolar disorder therapeutic lithium. These responses were robust and reproducible over time across many repeated assays. We then conducted a screen of ~1500 compounds from a library of Food and Drug Administration–approved drugs and known bioactives and confirmed the HTS hits, revealing multiple chemical and biological classes of novel small-molecule probes of Wnt/β-catenin signaling. Generating these type of pathway-selective, cell-based phenotypic assays in human iPSC-derived neural cells will advance the field of human experimental neurobiology toward the goal of identifying and validating targets for neuropsychiatric disorders.National Institute of Mental Health (U.S.) (Grant R01MH091115)Stanley Medical Research Institut

    Distributed Response Time Analysis of GSPN Models with MapReduce

    Get PDF
    widely used in the performance analysis of computer and communications systems. Response time densities and quantiles are often key outputs of such analysis. These can be extracted from a GSPN’s underlying semi-Markov process using a method based on numerical Laplace transform inversion. This method typically requires the solution of thousands of systems of complex linear equations, each of rank n, where n is the number of states in the model. For large models substantial processing power is needed and the computation must therefore be distributed. This paper describes the implementation of a Response Time Analysis module for the Platform Independent Petri net Editor (PIPE2) which interfaces with Hadoop, an open source implementation of Google’s MapReduce distributed programming environment, to provide distributed calculation of response time densities in GSPN models. The software is validated with analytically calculated results as well as simulated ones for larger models. Excellent scalability is shown. I
    • …
    corecore