284 research outputs found

    Advanced Topical Formulations (ATF)

    Get PDF
    Topical formulations aim to target the skin for a variety of cosmetic, protective or therapeutic needs. Despite the use of creams and ointments over the millennia, the bioavailability of actives from topical preparations remains quite low, often not exceeding 1-2% of the applied dose. In this review we examine the reasons underlying the poor performance of topical preparations. We also outline a rational approach, based on Fick’s laws of diffusion, to develop advanced topical formulations. Methodologies which are currently used in research and development are critically examined and the importance of understanding the fate of the vehicle as well as the active is emphasised. Advanced topical formulation development will also be facilitated by emerging and sophisticated analytical techniques that are able to probe real time delivery of actives to the skin. A good understanding of the underlying physical chemistry of both the formulation and the skin is crucial in the development of optimised topical products

    Transdermal delivery of testosterone

    Get PDF
    Male hypogonadism has been treated with exogenous testosterone since the 1930s. The early transdermal patches of testosterone became available in the 1980s with gel and solution preparations following subsequent decades. This review focusses on the skin permeation characteristics of testosterone, pharmacokinetics following application of transdermal formulations and formulations currently available. At present, gels dominate the market for transdermal testosterone replacement therapy, presumably because of their greater patient acceptability and non-occlusive nature compared with patches. However, specific incidences of secondary transfer of gels to children with consequent unwanted effects such as precocious puberty have been reported. A regulatory review of all testosterone replacement therapies is currently underway which may have implications for future prescribing practices of transdermal testosterone products

    Drug crystallization – implications for topical and transdermal delivery

    Get PDF
    INTRODUCTION: Crystallization of actives in skin following topical application was suggested by studies in the 1950s and 1960s but is poorly understood. In contrast, the problem of crystallization of actives on skin and in transdermal formulations has been known for many years. Areas covered: With respect to crystallization in skin, this review describes early reports of a skin 'reservoir' and possible reasons underlying its genesis. Techniques to study crystallization on and in skin and in transdermal patches are outlined. The role of the vehicle in skin delivery is emphasised. Studies which have investigated permeation from crystalline particles are described. Approaches to limit crystallization of actives are discussed. Using supersaturation and antinuclean polymers, control of crystal size is possible; controlled release from crystals is also employed in transdermal patches. Expert Opinion: Drug crystallization has significant implications for topical and transdermal delivery. Approaches have been developed to counteract the issue for transdermal patches but crystallization in and on the skin for other formulations remains unresolved. Greater knowledge of residence time of excipients and their interaction with skin at the molecular level is critical in order to address the problem. This will lay the foundations for better design of topical/transdermal formulations

    Enhancing mechanics education through shared assessment design

    Full text link
    © American Society for Engineering Education, 2016. There is considerable commonality between engineering undergraduate programs in terms of content, pedagogies, course structures and assessment practices, particularly in terms of engineering fundamentals such as mechanics. Despite this, and the availability of an array of online resources, there seems to be limited commitment to sharing learning resources among teaching academics and between institutions. Further, there seems to be a specific resistance to sharing those materials that support the teaching and learning of technical content1. Collaborations seen in research networks seem not to have equivalent presence in teaching and learning, despite a literature that points to the benefits of sharing curriculum resources 2,3. A few projects funded by the Federal Office for Learning and Teaching (OLT) in Australia have made freely available resources as deliverables (A proactive approach to addressing student learning diversity in engineering mechanics 4; Promoting student engagement and continual improvement: Integrating professional quality management practice into engineering curricula5; Remotely accessible laboratories: Enhancing learning outcomes6 and many more 7). There has been varied uptake of these, however, and the long-term maintenance of online resources is problematic. There is also a literature that identifies sustainability challenges with open educational resources including funding and intellectual property rights 3. It could be argued that failure to provide resources and, concomitantly the uptake by teaching academics of such resources impedes student access to these resources and therefore impacts their learning. It also contributes to inefficiencies brought about by work duplication. The reasons for limited uptake of resources are both institutional and individual. However, there are nuances to what is meant by a resource, how resources are modified by academics and where in a program they might be used 1. For the purposes of this paper, we are looking at resources designed to assist in the learning and teaching of engineering mechanics. This paper presents the results of a workshop held as part of a project, funded by the Australian Council of Engineering Deans (ACED), to promote curriculum sharing across the 35 universities in Australia that teach engineering. It includes a description and analysis of the activities, an analysis of the workshop evaluation as well as one participant's reflection on the process

    The application of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the stratum corneum

    Get PDF
    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm(-1)) containing the carboxylate (COO(-)) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO(-) asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin

    A comparative study of the in vitro permeation of ibuprofen in mammalian skin, the PAMPA model and silicone membrane

    Get PDF
    Human skin remains the membrane of choice when conducting in vitro studies to determine dermal penetration of active pharmaceutical ingredients or xenobiotics. However there are ethical and safety issues associated with obtaining human tissue. For these reasons synthetic membranes, cell culture models or in silico predictive algorithms have been researched intensively as alternative approaches to predict dermal exposure in man. Porcine skin has also been recommended as an acceptable surrogate for topical or transdermal delivery research. Here we examine the in vitro permeation of a model active, ibuprofen, using human or porcine skin, as well as the Parallel Artificial Membrane Permeation Assay (PAMPA) model and silicone membrane. Finite dose studies were conducted in all models using commercial ibuprofen formulations and simple volatile ibuprofen solutions. The dose applied in the PAMPA model was also varied in order to determine the amount of applied formulation which best simulates typical amounts of topical products applied by patients or consumers. Permeation studies were conducted up to 6 h for PAMPA and silicone and up to 48 h for human and porcine skin. Cumulative amounts permeated at 6 h were comparable for PAMPA and silicone, ranging from 91–136 g/cm2 across the range of formulations studied. At 48 h, maximum ibuprofen permeation in human skin ranged from 11–38 g/cm2 and corresponding values in porcine skin were 59–81 g/cm2. A dose of 1 l/cm2 was confirmed as appropriate for finite dose studies in the PAMPA model. The formulation which delivered the greatest amount of ibuprofen in human skin was also significantly more efficient than other formulations when evaluated in the PAMPA model. The PAMPA model also discriminated between different formulation types (i.e. gel versus solution) compared with other models. Overall, the results confirm the more permeable nature of the PAMPA, silicone membrane and porcine tissue models to ibuprofen compared with human skin. Further finite dose studies to elucidate the effects of individual excipients on the barrier properties of the PAMPA model are needed to expand the applications of this model. The range of actives that are suitable for study using the model also needs to be delineated

    Ion Pairs for Transdermal and Dermal Drug Delivery: A Review

    Get PDF
    Ion pairing is a strategy used to increase the permeation of topically applied ionised drugs. Formation occurs when the electrostatic energy of attraction between oppositely charged ions exceeds their mean thermal energy, making it possible for them to draw together and attain a critical distance. These ions then behave as a neutral species, allowing them to partition more readily into a lipid environment. Partition coefficient studies may be used to determine the potential of ions to pair and partition into an organic phase but cannot be relied upon to predict flux. Early researchers indicated that temperature, size of ions and dielectric constant of the solvent system all contributed to the formation of ion pairs. While size is important, this may be outweighed by improved lipophilicity of the counter ion due to increased length of the carbon chain. Organic counter ions are more effective than inorganic moieties in forming ion pairs. In addition to being used to increase permeation, ion pairs have been used to control and even prevent permeation of the active ingredient. They have also been used to stabilise solid lipid nanoparticle formulations. Ion pairs have been used in conjunction with permeation enhancers, and permeation enhancers have been used as counter ions in ion pairing. This review attempts to show the various ways in which ion pairs have been used in drug delivery via the skin. It also endeavours to extract and consolidate common approaches in order to inform future formulations for topical and transdermal delivery

    Getting it right: The case for supervisors assessing process in capstone projects

    Full text link
    © 2015 TEMPUS Publications. Capstone projects represent the culmination of an undergraduate engineering degree and are typically the last checkpoint measure before students graduate and enter the engineering profession. In Australia there is a longstanding interest in and commitment to developing quality capstone experiences.Anational study into the supervision and assessment of capstone projects has determined that whilst there is relative consistency in terms of what project tasks are set and assessed, there is not comparable consistency in how these tasks or assignments are marked. Two interconnected areas of assessing process and the role of the supervisor in marking are identified as contentious. This paper presents some findings of a national case study and concludes that whilst further investigation is warranted, assessing process as well as project products is valuable as is the need for greater acceptance of project supervisors as capable of making informed, professional judgments when marking significant project work

    Preparation, characterization and buccal permeation of naratriptan.

    Get PDF
    Naratriptan (NAR) is currently used for the management of migraine as the hydrochloride salt (NAR.HCl) and is administered as an oral tablet. This work evaluates the feasibility of buccal delivery of NAR in order to ensure faster onset of action and avoid the side-effects associated with conventional oral formulations. We hypothesized that the unionized form of NAR would permeate buccal tissue to a greater extent than the salt. Therefore the first stage of this work required preparation of the free base from NAR.HCl. Characterisation of the base with thermal and elemental analyses confirmed its purity; logP and logD values were also determined. The pH permeation profile of NAR was also determined in the range 7.4-10. Solubility studies in non-aqueous solvents indicated that Transcutol™ (TC) and dipropylene glycol (DPG) were suitable vehicles for the free base. Maximum amounts of NAR which permeated after 6h were ∼130μg/cm(2). Based on the pH permeation results and studies conducted at two different doses NAR appears to permeate porcine buccal tissue via the transcellular route. Finally, estimates of likely systemic values suggest that optimised formulations should be taken forward for in vivo evaluation

    Topical delivery of hexamidine

    Get PDF
    Hexamidine diisethionate (HEX D) has been used for its biocidal actions in topical preparations since the 1950s. Recent data also suggest that it plays a beneficial role in skin homeostasis. To date, the extent to which this compound penetrates the epidermis has not been reported nor how its topical delivery may be modulated. In the present work we set out to characterise the interaction of HEX D with the skin and to develop a range of simple formulations for topical targeting of the active. A further objective was to compare the skin penetration of HEX D with its corresponding dihydrochloride salt (HEX H) as the latter has more favourable physicochemical properties for skin uptake. Candidate vehicles were evaluated by in vitro Franz cell permeation studies using porcine skin. Initially, neat solvents were investigated and subsequently binary systems were examined. The solvents and chemical penetration enhancers investigated included glycerol, dimethyl isosorbide (DMI), isopropyl alcohol (IPA), 1,2-pentanol (1,2-PENT), polyethylene glycol (PEG) 200, propylene glycol (PG), propylene glycol monolaurate (PGML) and Transcutol®P (TC). Of a total of 30 binary solvent systems evaluated only 10 delivered higher amounts of active into the skin compared with the neat solvents. In terms of topical efficacy, formulations containing PGML far surpassed all other solvents or binary combinations. More than 70% of HEX H was extracted from the skin following application in PG:PGML (50:50). Interestingly, the same vehicle effectively promoted skin penetration of HEX D but demonstrated significantly lower uptake into and through the skin (30%). The findings confirm the unpredictable nature of excipients on delivery of actives with reference to skin even where there are minor differences in molecular structures. We also believe that they underline the ongoing necessity for fundamental studies on the interaction of topical excipients with the skin
    • …
    corecore