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Abstract 

 

Introduction: Crystallization of actives in skin following topical application was suggested by 

studies in the 1950s and 1960s but is poorly understood. In contrast, the problem of 

crystallisation of actives on skin and in transdermal formulations has been known for many 

years.  

Areas covered: With respect to crystallisation in skin, this review describes early reports of a 

skin “reservoir” and possible reasons underlying its genesis. Techniques to study 

crystallisation on and in skin and in transdermal patches are outlined. The role of the vehicle 

in skin delivery is emphasised. Studies which have investigated permeation from crystalline 

particles are described. Approaches to limit crystallisation of actives are discussed. Using 

supersaturation and antinuclean polymers, control of crystal size is possible; controlled 

release from crystals is also employed in transdermal patches.  

Expert Opinion: Drug crystallisation has significant implications for topical and transdermal 

delivery. Approaches have been developed to counteract the issue for transdermal patches 

but crystallisation in and on the skin for other formulations remains unresolved. Greater 

knowledge of residence time of excipients and their interaction with skin at the molecular 

level is critical in order to address the problem. This will lay the foundations for better 

design of topical/transdermal formulations.  

 
 
Keywords: Crystallisation, excipients, patches, reservoir, skin, supersaturation, topical, 

transdermal 
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Article Highlights 
 

 The bioavailability of actives from topical and transdermal formulations is low when 
compared with other routes of drug delivery. 

 Crystallisation of the active on and in the skin is proposed as one of the reasons 
underlying the limited amount of active which may be delivered (trans)dermally. 

 Where the active crystallizes in the actual formulation, there are also significant 
implications for efficacy and safety.  

 Drug crystallisation may be exploited for sustained release delivery.  

 More insight is needed into excipient/vehicle interactions with, and disposition in, 
skin to develop more efficacious topical and transdermal formulations  

 
 
1. Introduction 

The Egyptians used powders and suspensions of solids in oils to treat the skin and 

were aware of the use of such to treat skin conditions and as cosmetics [1].  Powders have 

been used more recently to treat conditions such as Athlete’s Foot and it is important to 

recognize that the solid material must dissolve to reach the site of action. Dissolution of the 

active in the skin lipids is therefore important.  The influence of the formulation on delivery 

to and through the skin has been known for many centuries, for example in mediaeval times 

‘flying ointment’ involved the extraction of psychoactive alkaloids from plant material, the 

conversion of the salt form to the free base (by treatment with an alkali) and the 

incorporation of the free base into a fatty ointment in order to promote skin penetration 

[2].  A more quantitative approach to formulation was achieved in the 1960s with the use of 

corticosteroids to treat skin conditions.  It was discovered that, under occlusion, 

corticosteroids would permeate the skin and produce vasoconstriction [3].  The skin 

blanching effect was related to both the permeation of the steroid and its intrinsic potency.  

As the formulation was altered, the degree of vasoconstriction could be attributed to the 

efficacy of the formulation in delivering the active. For example, Barrett and co-workers 

investigated the permeation of fluocinolone acetonide (FA) from a simple formulation 

(white soft paraffin) but altered the physical state of the steroid by using ether coarse 

particles, micronised particles, or the addition of a small amount of propylene glycol (PG) 

that was just sufficient to dissolve the steroid [4]. The blanching results showed that the 

best formulation was when the corticosteroid was in solution and the worst was the 

formulation which contained the coarse particles.  This was a clear indication that, under 

these conditions, the dissolution of the active was important in affecting delivery through 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

on
do

n]
 a

t 0
0:

05
 1

5 
Ja

nu
ar

y 
20

16
 



4 
 

the skin.  Moreover, this was one of the first examples which demonstrated that the 

presence of drug in solid or crystalline form versus drug in solution would influence the 

performance of topical formulations. The aim of this review is to provide an expert opinion 

on the relevance of crystallisation on and in skin for topical and transdermal preparations. 

Incidences where crystallisation is suggested in the early literature are reviewed. Examples 

of crystallisation or formation of a reservoir following application of transdermal and topical 

formulations are provided. Manipulation of crystal formation for drug delivery and systems 

based on solid drug particles are also considered. The use of antinucleant polymers to 

Inhibit crystal formation in both topical and transdermal preparations is described. 

Approaches to study this phenomenon on and in the skin as well as in transdermal patch 

formulations are outlined. For topical formulations and some transdermal systems the 

importance of the vehicle or excipients in maintaining the active in solution in the skin is 

emphasised.  

 

2. Existence of a skin “reservoir” and early hints of drug crystallisation in skin  

The existence of a depot or reservoir for actives applied to the skin was first 

suggested by Malkinson and Ferguson [5]. Following application of 14C-hydrocortisone and 

unlabelled hydrocortisone in a petrolatum base to the forearm of two patients, (1.5 or 2.8 

mg/cm2) radioactivity was detected in the urine for up to 6 days. The application sites were 

covered for the 6 day period with a perforated aluminium patch and the authors postulated 

that small but steady amounts of hydrocortisone might be released from a depot of the 

active in the skin. Actual evidence for the existence and location of such a reservoir in the 

stratum corneum was first presented by Vickers [6]. In initial experiments FA was applied as 

a cream to the forearms of two subjects and occluded with Saran film. After 16 h the film 

was removed and vasoconstriction was observed for 6 – 8 h. Four days later a similar 

experiment was performed with the cream applied to a different site; normal washing took 

place during the experiments. Upon removal of the film two sites of vasoconstriction were 

observed, the first corresponding to the application area four days previously and the 

second corresponding to the area for the second experiment. If the arms were reoccluded 

with Saran film, even up to 12 or 14 days after initial application of the steroid, 

vasoconstriction reappeared without any reapplication of the steroid. This was suggested to 

reflect the presence of a depot of active in the skin from which steroid was released after 
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each re-occlusion. The studies were subsequently extended to investigate the phenomenon 

more fully.  In the second set of experiments 19 healthy subjects were studied and a total 

dose of 0.2 mg of FA or triamcinolone acetonide (TA) was applied as an ethanolic solution to 

the forearms. Following drying, the application sites were occluded with Saran wrap for 16 

h. Areas of vasoconstriction were recorded 1 h after removal of the occluding material and 

subjects resumed normal daily washing. Arms were re-occluded every two or three days 

until vasoconstriction was no longer evident following removal of the Saran wrap. Sustained 

vasoconstriction was seen in all volunteers but the duration varied from 3 to 15 days. In a 

third set of experiments, 12 of the subjects were given intradermal injections of TA in 

isotonic saline containing 1.8% ethanol. The amount of TA administered was the same as 

that which induced vasoconstriction when administered topically. Vasoconstriction was 

demonstrated in all subjects and faded by 6 to 8 h; two days later the areas were occluded 

but no vasoconstriction was evident. Finally, in one subject three further experiments were 

conducted which involved tape stripping (Scotch tape) the skin before topical application of 

FA, tape stripping the skin after application of FA and partial tape stripping of the skin. 

Where skin was tape stripped before application of FA vasoconstriction was evident 1 h 

after application of FA and lasted for 6 – 8 h; however no vasoconstriction was evident two 

days later. For sites tape stripped after application of FA, after two days vasoconstriction 

was only evident in control sites and sites which had been partially stripped; complete tape 

stripping resulted in no vasoconstriction. These results clearly indicated that the depot or 

reservoir of the active was sited in the outer epidermis rather than the dermis and 

specifically the stratum corneum. Further support for this was obtained in a later paper 

where biopsies of stripped and unstripped skin were assessed and the largest amount of 

active was observed to be in the stratum corneum [7]. It is interesting to note that the 

average turnover time of the stratum corneum is 14 days, comparable to the length of time 

of the perceived reservoir. This would indicate that any reservoir function of the skin resides 

in the stratum corneum and the reservoir itself may result from over-saturation of the of 

intercellular lipids with the active.  

Stoughton and Fritsch had also observed that when FA was applied to the skin in an 

ethanol:dimethylsulphoxide (DMSO) vehicle, a reservoir was established compared with 

application of the active in ethanol alone [8]. Later, Stoughton also demonstrated the 

existence of a reservoir in human skin for both hydrocortisone and FA following application 
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in DMSO [9]. 14C-hydrocortisone and 14C-FA were applied to the forearms of adult subjects 

in each of the following vehicles (i) DMSO 40% in ethanol (ii) DMSO 20% in ethanol (iii) 

Ethanol. Preparations were left in place for 30, 120 and 240 min and application sites were 

then washed with soap and water. Radioactivity was subsequently monitored over 16 days 

with normal washing and bathing activities during this time. Table 1 shows the percent 

radioactivity in the stratum corneum for each formulation up to Day 12. Considering the 

data for the ethanol vehicle compared with the the DMSO:ethanol vehicles, these results 

are consistent with deposition of most of the active on the skin for the former, but 

penetration of the active deeper into the stratum corneum for the latter. The prolonged 

residence time of the active for the DMSO:ethanol vehicles is consistent with a “stranding” 

of the actives in the stratum corneum. These experiments also indicated that the reservoir 

was not easily removed by conventional washing or rinsing the skin surface with ethanol. In 

a separate set of experiments which involved tape stripping the skin, the location of the 

reservoir in the stratum corneum was confirmed.  

 

Table 1: Average percent radioactivity retained in stratum corneum following application 

of 14C-hydrocortisone and 14C-fluocinolone acetonide to forearms of 3 human subjects in 

various vehicles (Adapted from reference 9) 

 Day 0 Day 2 Day 4 Day 8 Day 12 Day 16 

14C-Hydrocortisone 
 

40% DMSO in ethanol  36 16 6 3 1.5 1.1 

10% DMSO in ethanol  31 13 4 1 0.6 0.3 

Ethanol  2.2 0 0 0 0 0 

14C-Fluocinolone acetonide  
 

40% DMSO in ethanol  34 15 7 3 0.8 0.1 

10% DMSO in ethanol  22 9 4 1 0.2 0 

Ethanol   1.8 0.08 0 0 0 0 

 

Given the stratum corneum turnover is approximately 14 days, this induction of a 

reservoir is quite remarkable. This reservoir effect was later reported for other topically 
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applied substances which include acetylsalicylic acid, hexachlorophene and sodium fusidate 

[10,11]. No real explanation has been provided for the reservoir effect but it could be 

attributed to crystallisation of the actives in the intercellular spaces of the stratum corneum.  

The route of penetration of most materials through the skin is thought to be through the 

channels that surround the corneocytes [12]. These channels contain a complex mixture of 

lipids which are structured into lipid bilayers. There are therefore hydrophilic  and lipophilic 

domains (Figure 1).  The composition, organisation and role of the lipids in maintenance of a 

competent skin barrier are examined in a number of important recent publications  [13-15]. 

Modulation of the lipids and thus the permeation pathway, because of vehicle effects is 

discussed further in section 6  Each corneocyte has a diameter of about 40 µm and a 

thickness of around 0.5 µm, separated from each other by a gap (inter-corneocyte space) of 

approximately 75 nm. The actual thickness of the stratum corneum is 15 -20 m for the 

forearm or abdomen but there is regional variability with anatomic site [12].  

 

 

Figure 1. Schematic of corneocytes embedded in lipid matrix with average 

dimensions for stratum corneum, corneocyte thickness, and intercellular space 

 

For an active to remain in solution, and therefore able to diffuse, it must have some  

solubility in both water and lipids. In the experiments by Stoughton, the ethanol would 

evaporate quickly (within a few minutes) and the DMSO would permeate into and through 

the skin rapidly [9]. Whilst the DMSO was in the stratum corneum, the steroid would remain 

in solution. However DMSO is a very good permeant and would rapidly be lost from the 

stratum corneum leaving the steroid ‘stranded’ and crystallized in the lipid bilayers. Under 

these conditions penetration into the deeper layers of the skin would depend on dissolution 
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and transfer sequentially, across hydrophilic and lipophilic domains; this would not be an 

efficient process and therefore not a rapid event. The poor bioavailability of topical steroids 

(~2 %), discussed further in Section 3, is consistent with limited solubilisation capacity in the 

stratum corneum.  

 

3. Implications of crystallisation of active on and in the skin for topical and 

transdermal delivery  

3.1 Topical delivery 
A further publication from the 1960s which also examines a steroid, hydrocortisone, 

shows that its bioavailability is less than 2% [16]. It is surprising that the reasons for this 

have not been examined. The steroid was applied as a solution in acetone which would 

evaporate rapidly leaving a film of the active on the skin surface. Only steroid in direct 

contact with the intercellular spaces should diffuse deeper into the skin as it will be 

solubilised in the intercellular lipids.  Steroid crystallized onto the corneocytes would be 

unable to diffuse into the dense keratinised cells and would therefore be unavailable. Even 

when applied to diseased skin the overall percentage of hydrocortisone which permeates is 

very low and crystallisation is a possibility. Wester and co-workers investigated the 

absorption of the molecule in patients with psoriasis [17]. 14C-hydrocortisone was 

incorporated in a 0.5% cream formulation and 60 L was applied to plaques on the forearm 

covering an area of 46.5 cm2. For control subjects the same sites and application areas were 

used and all subjects were instructed not to wash the areas for 24 h. Percutaneous 

absorption was assessed by collecting urinary samples at intervals over 24 h and then at 

every 24 h interval up to 7 days. In subjects with healthy skin the amount absorbed was 

reported as 2.3 ± 1.4% at 24 h, while the corresponding value for psoriatic patients was 

2.5±1.2%. From a practical perspective patients are often counselled to occlude plaques 

following application of topical steroids; this should theoretically create a more favourable 

environment for “stranded” drug to dissolve and thus achieve greater delivery of the steroid 

in a biologically active form. A cross-over study conducted by Melendres and colleagues 

which investigated percutaneous absorption of hydrocortisone following single topical 

dosing or multiple dosing underlined further the likelihood of formation of a depot of the 

active in the skin [18]. Radiolabelled drug was applied to the forearm of male subjects. The 

drug was applied in acetone to an the application site area of 2.5 cm2 which was protected 
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by a non-occlusive polypropylene chamber. Four methods of application were investigated 

(i) single application of 13.33 g of drug with removal by washing after 24 h (ii) single 

application of 40 g of drug with removal by washing after 24 h (iii) three repeat 

applications of 13.33 g of with dosing at 0, 5 and 12 h with removal by washing at 24 h (iv) 

three repeat applications of 13.33 ug as for the previous treatment but the application site 

was washed before application at 5 h and 12 h and a final washing step was conducted at 24 

h. The percentage absorption of hydrocortisone was determined by collection and 

measurement of radioactivity in urine. Although application of a higher amount of 

hydrocortisone increased the amount absorbed it did not improve the percentage of active 

delivered. Unexpectedly, removal of the drug by washing did not result in any significant 

decrease in absorption compared with the multiple application protocol where no washing 

step was employed. This was suggested to reflect drug re-dilution at the skin surface and/or 

rehydration of the skin with consequent improvements in drug bioavailability. Comparing 

amounts absorbed for single versus multiple applications the authors also proposed a 

“solvent-vehicle” effect i.e. the greater amount of acetone administered for multiple 

applications promoted higher absorption of the active than expected because of enhanced 

dissolution of solid material at the skin surface or in the stratum corneum.  

Crystallisation also has consequences for measurement of active in skin following 

topical application if bioequivalence (BE) needs to be shown between preparations. Tape 

stripping (TS) has been investigated extensively as a potential method to determine rate and 

extent of delivery of actives into the skin from topical preparations with a draft guidance 

published by the FDA in the 1990s [19]. The guidance was withdrawn 4 years later because 

of contradictory results between laboratories [20]. A number of sponsored studies have 

subsequently been conducted in efforts to refine and develop further TS for determination 

of quality and performance of topical products but only the Japanese Division of Drugs 

currently permits the use of TS in such determinations [21]. However the protocol as 

described does not account for changes in the physical state of the active. Caution needs to 

be exercised where claims are made for therapeutic equivalence of the active following 

application in different vehicles. For example, Umemura and co-workers applied lotion and 

ointment formulations of a vitamin D3 analogue, maxacalcatol, to volunteers and then used 

TS to determine amounts of active in the skin at different time points [22]. Because the 
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amounts of the active recovered were not significantly different for both formulations the 

authors noted that treatment with the lotion would be equally as effective as treatment 

with the ointment. In fact, this would need to be confirmed by a clinical study because the 

more volatile nature of the lotion formulation might reasonably be expected to deposit 

active on and in the skin to a greater extent than the ointment as we have noted in section 2 

and earlier in this section.  

 

3.2 Transdermal gels, solutions and sprays 

Transdermal gels, solutions and sprays emerged in the 1990s and early 2000s for 

estradiol, oxybutynin and testosterone delivery. Typically, these formulations contain 

alcohol and may also contain water so that when applied onto the skin they dry quickly. It is 

clear that therapeutically relevant amounts of the various actives are deposited on the skin 

following application and safety communications have been issued by the US FDA in relation 

to accidental secondary exposure [23,24]. Interestingly, the prescribing information for 

Androgel™ 1% (testosterone gel) also refers to the skin serving as “a reservoir for the 

sustained release of testosterone into the systemic circulation” [25]. Similarly for an 

estradiol gel formulation it is noted that “the estradiol is stored in the subcutaneous tissue 

from where it is released gradually into systemic circulation” [26]. As these formulations are 

also re-applied to the same anatomic site it is possible to speculate that this method of use 

could facilitate increased dissolution of any crystallised active in the skin. This is also 

consistent with the “solvent-vehicle” hypothesis proposed by the authors of reference [18]. 

in the previous section where repeated application of the formulation promoted enhanced 

delivery.  

 

3.3 Transdermal patches 

Transdermal patches have evolved over the past decades to become thinner and 

smaller. For this to be realised the payload is often close to saturation which can result in 

stability issues, particularly on storage.  Again, crystallisation is an important determinant 

and polymorphism of the active can be a contributory factor. Clearly, crystallisation has 

implications for release from patches as well as for efficacy and safety of the formulations.  

One of the first instances in which problems with storage of transdermal patches were 

demonstrated was the difference between estradiol patches that were in date compared 
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with out of date batches [27]. In vitro skin permeation studies were conducted on two 

different reservoir patch formulations from two batches; one batch had been recently 

manufactured while the other had been stored for 5 years. While release rates were similar 

for the patches which had been recently manufactured, the older patches delivered more of 

the active after 48 h. The authors suggested that this reflected a change in the formulation 

of the older patches, possibly resulting from accumulation of the active in adhesive or 

movement of ethanol out of the reservoir and, thus, a higher thermodynamic activity of the 

estradiol. 

Fentanyl has been one of the most successful transdermal products and the original 

design contained a gelled reservoir of fentanyl crystals in an ethanolic solution. The design 

made use of the fact that zero order delivery of the potent drug would result from the 

thermodynamic activity of the reservoir remaining constant. Therefore diffusion across the 

rate controlling membrane in the device would be constant during the application time of 

the patch, 3 days [28]. During this time both fentanyl and ethanol diffused from the patch, 

which stopped working because the ethanol, not the fentanyl became exhausted.  Clearly, 

this illustrates another case where crystalline material cannot diffuse into the skin. A 

number of deaths have been attributed to the failure of the reservoir patch because of 

claims that if the patch ruptures and the gel leaks, fatal doses of fentanyl are absorbed from 

the ethanolic suspension of fentanyl [29]. The delivery of fentanyl from the suspension has 

been examined in vitro and the results, in fact, indicated that fentanyl could not be 

delivered at a high rate even from a failed patch in which the gel leaked from the reservoir 

over the skin [29].  The increase of fentanyl levels in the blood was calculated to be, at most, 

25%.  It is also interesting to observe that the bioavailability of the fentanyl from the 

ethanolic suspension in this in vitro study is only 7.6%.  This is another example of how 

crystallisation on the corneocyte plates gives rise to low doses of the active being absorbed.  

A more recent problem was highlighted with rotigotine, which had regulatory 

approval for several years until some batches showed crystallisation on storage. 

Crystallisation occurred because of the formation of a new polymorph of the drug which 

was more stable, but less soluble, in the silicone matrix of the patch [30].  Approval was 

revoked and a new patch design and manufacturing process was able to solve the problem, 

with rotigotine patches now back on the market for the treatment of Parkinsonism and 
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restless leg syndrome [31]. Approaches to limit crystallisation in patch formulations are 

discussed further in section 7.2.  

 

4. Skin penetration of the active from the crystalline/solid form  

4.1 Topical formulations 

As noted earlier, Barrett had demonstrated the importance of maintaining the active 

in solution for optimal permeation. Penetration of active from solid material in vivo was also 

evident [2], however the absorption of drug was limited by the dissolution rate into the 

white soft paraffin. Micronised FA (1 – 20 m) incorporated in white soft paraffin produced 

a faster onset of vasoconstriction compared with coarse particles incorporated in the same 

vehicle. Lippold and Schneemann compared the penetration kinetics of betamethasone-17-

benzoate for a range of solution and suspension preparations; skin penetration of the 

steroid ester reached a maximum for the suspension and was independent of the vehicle 

composition [32]. In a later study the same group evaluated the clinical efficacy of solution 

or suspension vehicles (liquid paraffin or triglycerides) of the same active in patients with 

dermatitis [33]. The suspension formulation was shown to improve symptoms to a 

significant extent compared with the solution formulation although in vitro tests confirmed 

more rapid drug release from the solution formulation. Barry and co-workers reported 

comparable vasoconstriction for 0.05 and 0.1% commercial desonide preparations where 

the active was suspended in a cream base [34]. Because the steroid is present at the same 

thermodynamic activity in both preparations there is clearly no advantage in using the 

higher strength preparation.  

More recently, a series of mechanistic studies on skin penetration of a model active 

in powder form (~50 m) and in solution was conducted by Romanchuk and Bunge [35]. 

Permeation of cyanophenol (CP) through skin and silicone membrane was evaluated in 

diffusion cell experiments. Solutions were in complete contact with the membrane of 

interest while this is not the case for the powder particles (Figure 2).  
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Figure 2. Powder particles and theoretical points of contact with corneocytes and 

intercellular lipids 

 

Experiments were conducted over 6 h for silicone and 8 h for skin and powder was 

replaced with saturated solutions of the actives half way through the experiment. Steady 

state fluxes of CP were comparable in silicone for solution and powder forms however, 

results for skin indicated a significantly lower CP flux for the powder. Absorption from 

powders into both silicone and skin was possible in the absence of moisture and the data 

were consistent with a more limited surface area for active permeation in skin compared 

with silicone. The latter is entirely consistent with the intercellular route comprising the 

predominant pathway for permeation through the skin.  

 

4.2 Transdermal formulations 

In some circumstances, it can be of benefit to produce transdermal patches, which 

have a polymer matrix into which crystals of the active are dispersed. Where a drug has a 

narrow therapeutic window it may be necessary to have an upper limit to the rate at which 

the active is delivered. In the original reservoir devices this was achieved by the use of a rate 

controlling membrane. It is possible to produce controlled delivery by using a suspension of 

the active in a polymer adhesive matrix and relying on the dissolution of the particles to be 

the rate-controlling step. This is  the basis of the Mylan Fentanyl Transdermal system where 

suspended crystals are incorporated into the matrix [36]. Benefits associated with 
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incorporating different crystal sizes of the active as well as solubilised drug in an adhesive 

patch matrix are also outlined in US patent application 2006/0078603 A1 [37].  

 

4.3 Powderject technology 

A more ‘aggressive’ approach to drug permeation from particles formed the basis of 

the Powderject™ system conceived in the 1990s. This is distinguished from the other 

“passive” formulations discussed in this review, as the technology will breach the stratum 

corneum in order to deliver its payload; it does however exemplify a system which delivers 

the active in crystalline or solid form and hence its inclusion here. Essentially, this comprised 

of a device which propelled the active in powder form (20 – 100 m) through the outer 

layers of the skin and into the deeper epidermis using the energy of a supersonic jet of 

helium gas [38]. Despite the claimed advantages for such a drug delivery system - including 

being pain-free, needleless, better safety characteristics compared with injections, 

sustained or fast release modality and potential for targeting of the active - the technology 

has not progressed. This is surprising as the device was extensively tested for delivery of 

vaccine doses and studies appeared to yield very promising results in man. Dean and Chen 

investigated the delivery of a powdered trivalent influenza vaccine using a Powderject™ 

system compared with an intramuscular injection of the liquid form in human subjects [39]. 

Significant rises in the mean titers to all three viruses were observed for all subjects; values; 

increases in titer values, geometric mean titer values and seroconversions were comparable 

or better for the Powderject™ delivery system compared with the injection. Although skin 

reactions were observed (erythema, oedema, discoloration and flaking), they were reported 

to be self-limiting and reversible. Drape and co-workers employed this particle-mediated 

delivery approach in a phase 1 clinical trial to evaluate a monovalent DNA influenza vaccine 

[40]. Adult subjects received 1, 2 or 4 g of the vaccine and serum haemagglutination-

inhibition responses were elicited at all doses. This was the first successful demonstration of 

immunogenicity following administration of a DNA vaccine in humans and only mild to 

moderate reactions were reported at the skin site.  

 

5. Supersaturation and generation of drug crystals 
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In 1960, Higuchi published a paper in which he showed the importance of 

thermodynamic activity in percutaneous absorption [41]. The delivery of the active would 

be maximum when it was administered as a saturated solution.  Supersaturated states could 

be formed transiently, which could give rise to enhanced permeation, but these would be 

thermodynamically unstable. This hypothesis was tested by Coldman and co-workers in 

which FA was delivered to the skin, in vitro, in a simple formulation that contained a volatile 

and a non-volatile solvent [42]. As the volatile component evaporated, the steroid was left 

on the skin surface in a residual phase (the non-volatile component), and, depending on the 

conditions, it would be at various states of saturation, either sub- or super-saturated.  The 

penetration rate was proportional to the degree of saturation and optimal amounts of the 

volatile solvent were identified for enhanced skin permeation. Importantly, the authors also 

noted that increasing the amounts of the volatile solvent beyond these values resulted in 

decreased permeation because of crystallisation of the steroid.  

The pioneering studies on the effects of supersaturation were taken forward in the 

1990s by several research groups who attempted to optimise formulations by deliberately 

creating supersaturated states using a solvent:co-solvent approach. Typically the active is 

preferentially soluble in one solvent and saturation or supersaturation is achieved by 

dilution of solutions of the active in this solvent with the co-solvent with lower solubilising 

capacity. Once the required degree of supersaturation is attained the systems may be  

stabilised on a temporary basis by the addition of polymers that stop the crystallisation 

process, so called anti-nucleant polymers [43-47]. The precise mechanism by which these 

polymers act is unclear and there do not appear to be any guidelines to determine which 

ones should be selected, either on the basis of the solvent or the active. The types of 

polymer that have been studied most extensively are the celluloses, e.g. 

hydroxypropylmethyl cellulose or the pyrrolidones, e.g. polyvinylpyrrollidone (PVP) [48-51]. 

Depending on the polymer employed in these systems, the time for nucleation may be 

altered and the crystal habit changed. Control of the size of the crystals generated is 

possible for some system with stable dispersions being achieved for up to 40 days [48]. It is 

easier to produce and stabilise steroids, such as hydrocortisone, than non-steroidal anti-

inflammatory agents such as ibuprofen [52-53].  

It will be evident that a number of commercial preparations exploit supersaturation 

itself as a delivery platform, and most recently the spray technology developed by Acrux 
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[54]. This combines supersaturation with a penetration enhancer, octyl salicylate (OS) in 

alcohol; on application to the skin, the alcohol will evaporate leaving a residual phase of 

supersaturated active in the enhancer. Because the residence time of OS is more favourable 

than other enhancers prolonged penetration of the active from such systems is possible [55] 

which is discussed further in the next section.  Currently this technology is used in approved 

and marketed formulations for delivery of estradiol and testosterone. As noted in Section 

3.2, while achieving therapeutic efficacy, clinically relevant amounts of the actives clearly do 

remain on the skin following application of these products. 

 

6. Prevention of crystallisation 

6.1 The role of the excipient   

As noted by the authors of reference [18], in the optimisation of topical formulations 

it is important to recognise the role of the excipients in maintaining the active in solution in 

the skin. This will depend on both the solubilising power and the residence time of the 

excipient in the stratum corneum. It is interesting to note the paucity of data in the 

literature which deals with the disposition and penetration of commonly used excipients. 

We have previously reported the disposition of OS and PG when applied in volatile 

formulations to the skin [55]. Saturated and supersaturated solutions of oxybutynin were 

prepared in isopropanol with either PG or OS and permeation studies were conducted in 

Franz cells with mass balance studies for both the active and the two excipients. For all 

formulations OS always promoted superior penetration of the active compared with PG 

formulations because of the prolonged residence time of OS in the skin compared with PG. 

Once PG had been exhausted, as a result of penetration into the viable epidermis or loss 

through evaporation, drug permeation through the skin also ceased and significant amounts 

were recovered from the surface of the skin and following extraction of the skin. This 

indicated a “stranding” of the active in and on the skin because of depletion of PG. Because 

OS did not deplete it promoted longer permeation and more efficient delivery of the active.  

More recently we have begun to track permeation of other excipients including Transcutol™ 

(TC). Figure 3 shows that the rate and extent of permeation of TC is significantly higher 

compared with the glycols. Evaporation of the glycols however is also expected to 

contribute to the disparity in skin penetration observed [56]. Interestingly, TC is promoted 

for some skin applications by the manufacturer because it produces a “depot” effect for 
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certain actives [57] which is consistent with the permeation kinetics we have observed for 

the solvent.  

 

 

 

 

Figure 3. Percentage permeation of PG, butylene glycol (BD), Transcutol™ (TC) and 

dipropylene glycol (DiPG) in human skin in vitro following 10 l/cm2 dosing (n≥3, mean±SD) 

 

A further problem is our relatively limited understanding of the mechanistic effects 

of specific excipients or vehicle components which also modulate the barrier properties of 

the stratum corneum [58]. PG has been suggested to integrate into the hydrophilic regions 

of intercellular lipids and to modify penetrant solubility in the stratum corneum [56-57]. The 

penetration of a number of actives appears to track PG permeation, both in vitro and in vivo 

[61-63]. As we have seen, however, PG is not the optimal vehicle or enhancer for other 

actives and its rapid clearance will compromise the ability of the active to move through the 

skin [55]. Evidence has also been reported which indicates an ability of PG to extract  

cholesterol from the stratum corneum and model lipid membranes [64]. With increasing PG 

content, the permeability of hydrocortisone was observed to increase significantly, possibly 

reflecting less densely packed lipid domains and thus explaining the enhanced penetration 

of the active. Most recently, the important role of cholesterol in appropriate lipid 
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organization of the lamellar phases of the SC barrier has been demonstrated by the same 

group [65], using a series of biophysical studies on models of lipid mixtures. Further 

investigations of this nature will be necessary for rational selection of excipients and 

penetration enhancers for specific actives.  

 

6.2 Inhibition of crystallisation in transdermal and topical patch formulations 

In Section 5 the important role of anti-nucleant polymers in stabilizing 

supersaturated systems was described. This approach has also been harnessed for 

prevention of crystallisation in transdermal patch formulations. Lipp investigated the use of 

silica, silica gel and PVP to inhibit crystallisation of steroids in matrix transdermal patches 

and noted that direct interaction of the inhibitor with the dissolved drug molecule was 

necessary to prevent the problem [66]. A screening model for suitable crystal inhibitors was 

also proposed in this paper based on the thermal behaviour of binary mixtures of drug and 

inhibitor. Significant reductions in heats of fusion were observed for the mixtures compared 

with drug alone and for specific PVP grades no heats of fusion could be detected; 

transdermal patches formulated with these grades demonstrated no crystallisation even 

after 5 years storage. US patent 5656286A also notes the use of PVP to ensure a 

combination of norethinderone acetate and estradiol remains substantially crystal free [67]. 

Most recently, Banga and co-workers have conducted a series of studies to identify the 

optimum inhibitors for transdermal patch formulations [68-70]. For captopril and 

levonorgestrel PVP was identified as the preferred crystallisation inhibitor; for desogestrel 

copovidone was effective in arresting crystal formation.  

Cilurzo and co-workers have also used this approach to investigate prevention of 

crystal formation in a topical patch formulation of ibuprofen [71]. The patch consisted of a 

polydimethylsiloxane matrix. PG, two different grades of polyethoxylated castor oil and two 

co-polymers of methacrylic acid were individually assessed for their ability to inhibit drug 

crystallisation. PG was effective for up to 50 days without effects on skin permeation; the 

methacrylate co-polymers prevented crystallisation for up to 12 months but one of the co-

polymers compromised skin permeation to a greater extent than PG. The efficacy of the 

various inhibitors was attributed to favourable solubility and interactions of the drug 

molecule and polymers.  
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7. Techniques to study crystallisation on/in the skin and in transdermal patches 

7.1  Crystallisation on and in the skin 

Crystallisation of active on the skin following topical application has been noted in a 

number of studies but researchers do not typically report visual illustrations of the problem. 

Figure 4a shows crystals of cilazepril deposited on porcine skin during an in vitro Franz cell 

experiment (unpublished data). The active was applied as a saturated solution in PG (10 

l/cm2) and the corresponding permeation profile is shown in Figure 4b. After 6 h a white 

matrix is evident on the skin surface and from 24 h there is a plateau in permeation. This 

profile is consistent with depletion of the PG which results in deposition of the active on the 

skin; in addition the loss of vehicle is associated with no further significant permeation 

beyond 24 h.  
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a  

 

b 

Figure 4 (a) Crystals of cilazepril formed on skin during an in vitro Franz cell experiment 

visualised with an Olympus SZX12 Stereomicroscope 50x (b) Permeation of cilazepril in 

porcine skin following application of a saturated solution in PG (n>5; Mean±S.D.) 
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Other techniques which have been used to study drug crystallisation on the skin and 

in the skin include Confocal Raman spectroscopy and Stimulated Raman Scattering (SRS) 

microscopy. Spontaneous Raman spectroscopy collects vibrational, rotational and other low 

frequency modes from a sample following inelastic scatter after exposure of the sample  to 

electromagnetic radiation [72]. Confocal Raman spectroscopy (CRS) combines a confocal 

signal collection approach with Raman spectroscopy and its application for skin 

interrogation was first reported by Caspers and co-workers [73,74]. These papers report the 

first applications of CRS in man for non-invasive depth profiling of water and other 

endogenous components of the skin such as natural moisturising factor. Subsequently CRS 

has been used to profile the disposition of a number of actives in vivo following their topical 

application to the skin including ibuprofen, niacinamide, retinol and salicylic acid [62, 75-78]. 

Figure 5a illustrates the Raman spectrum of crystalline hydrocortisone and a saturated 

solution of hydrocortisone in DMSO; Figure 5b shows the Raman spectrum collected from a 

depth of 1.9 m into the volar forearm in one subject following application of a saturated 

solution of the active in DMSO (100 l/cm2) for 240 min. Data were collected using a River 

Diagnostics Skin Analyzer Model 3510 SCA.  To our knowledge this is the first demonstration 

of detection of crystalline active in the skin in vivo and work is ongoing to investigate if this 

can be shown for other actives.  
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 (a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 5: (a)Raman spectrum of crystalline hydrocortisone (red) and hydrortisone  in 

DMSO (green) and  (b) Raman spectrum at a depth of 1.9 m in the volar forearm 

following application of a saturated solution of hydrocortisone in DMSO for 240 min 

(Spectra acquired at 2 μm steps, 5 s exposure time) 
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In spontaneous Raman scattering one laser light source is used to illuminate the 

sample but in SRS, two laser beams at different frequencies coincide on the sample. Where 

the frequency difference or Raman shift matches that of a molecular vibration then 

amplification of the emitted signal occurs because of stimulated excitation [79].  Belsey and 

co-workers used SRS to visualise deuterated ibuprofen crystals on excised porcine skin [80]. 

Within 30 min post-application of a solution of the molecule close to saturation in PG, large 

geometric crystals could be visualised on the skin. Limitations of SRS appear to be the need 

to deuterate the active of interest and the fact that its suitability for use in man has not yet 

been demonstrated.  

 

7.2 Crystallisation in transdermal patches  

Crystals which have formed in situ in transdermal matrix patches may be visualised 

using conventional optical or polarised microscopy [81,82]. However analysis of the crystals 

themselves is extremely challenging because of difficulty in ensuring complete separation of 

the matrix from the crystals. A customised X-ray diffraction sample holder was used by Lipp 

and Müller-Fahrnow for single crystal structure determination for gestodene or estradiol 

crystals formed in patches [81]. Both actives were observed to crystallise in their most 

common solid state forms, namely estradiol hemihydrate and gestodene polymorph I. 

Latsch and co-workers [83] used microcalorimetry to determine the crystallised fraction of 

active as a function of time for acrylate patches containing estradiol hemihydrate and 

norethindrone acetate. These workers also proposed the use of microcalorimetry as a tool 

to screen the effects of excipients on the rate of the crystallisation process.  

 
8. Expert Opinion 

In 1969 [84] Barrett noted that “There is much scope for developing vehicles which 

will enable the drug to reach the site of action rapidly  and which will maintain a sufficient 

concentration at the site for the required length of time.” It is surprising that over 40 years 

on, formulations for topical delivery are still being produced in which the bioavailability is 

very low.  One major cause of the low bioavailability appears to be the reservoir that the 

active can form on and in the stratum corneum as well as deposition on the skin.  As we 

have noted in this review, there have only been a few attempts to document the extent of 

and physical state of the active in thereservoir and more importantly to try and determine 
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how the problem can be circumvented. Clearly, this is an area which has been under-

researched to date, and there are conspicuous opportunities, particularly in relation to 

topical formulations, to improve delivery of the payload to the skin. The ultimate goal will 

be to achieve improved efficacy of targeting of the active with a consequent reduction in 

cost of goods over currently used topical and transdermal preparations. A major challenge 

will be to identify and harness a suite of tools to determine the physical state of the active in 

the skin following topical application. Although some progress is evident, particularly with 

reference to in vivo Raman spectroscopy, we have a comparatively limited arsenal at 

present to investigate the problem.  

The importance of excipients in both topical and transdermal formulations cannot be 

over-stated. Considering topical formulations, common skin disorders such as eczema and 

psoriasis are significant determinants in sufferers’ quality of life and their alleviation may be 

better addressed by a more complete understanding of how simple excipients interact with 

the stratum corneum.  Little attempt has been made to show how excipients modify the 

solubility characteristics of the skin or how long they reside within the stratum corneum.  

With the increased sophistication and sensitivity of biophysical techniques, probing 

excipients in vivo in the skin has become a reality.  However, it is important to realise that 

the experimental design of such attempts must be appropriate.  Much has been written 

about the effects of formulations from infinite applications to the skin but it has to be 

recognised that a topical dose of a formulation for local effect is only of the order of 2 

mg/cm2.  At such a low dose the formulation changes significantly over a short period of 

time, some of the components may well evaporate significantly, e.g. water. ethanol, PG.  At 

the same time, both the active and some of the excipients will partition and diffuse into the 

skin. The time course over which the events occur will impact significantly on any 

crystallisation of the active on and in the skin. It is likely that some of the more lipophilic 

materials found in topical formulations, such as esters and fatty acids, will require extremely 

sensivite analytical methods to track their movement into the skin. These excipients already 

pose problems when monitored using conventional Franz cell studies where the focus is 

inevitably on tracking the active, not the vehicle. It is also important that our knowledge 

base on excipients improves so that we know how they affect the solubility characteristics 

of the complex lipids that make up the intercellular spaces. Recent studies with PG and 

cholesterol in model skin models are encouraging and it is anticipated that further insights 
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into other excipients should be forthcoming using this approach. Finally, we also need to 

know the residence time of excipients in the stratum corneum as this has been shown to 

correlate with that for the active.  

The future may see the development of formulations which prevent crystallisation 

on and in the skin and permit rapid lateral diffusion so that the active is not ‘stranded’ on 

the corneocytes but can partition into the intercellular spaces. Anti-nucleant polymers have 

shown promise in the prevention and control of the growth of crystals in simple topical 

formulations, but have not been taken forward. Considering the more conventional 

transdermal patch formulations, crystallisation problems have, in some cases, been 

addressed by the application of anti-nucleant polymers, therefore it is surprising this 

approach has not been investigated more widely for topicals.  

Transdermal gel formulations are restricted to a few actives at present but there are 

opportunties to improve delivery from these formulations where bioavailability is typically 

reported to be ~10%. This will require an understanding of how the vehicle and active 

interact in and on the skin and reformulation to optimise delivery of both; the optimum 

transdermal will minimise as much as possible the extent to which the active is deposited on 

skin or stranded in crystalline form. We believe that this will be area of continued interest to 

researchers as transdermals gels, rather than patches, are preferred by consumers and 

patients, as exemplified by the great success of Androgel™ in supplanting patches for 

testosterone delivery. This should also accelerate development of transdermal gels for other 

drugs which are currently delivered via transdermal patches.  
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