31,532 research outputs found

    Beam energy dependence of Hanbury-Brown-Twiss radii from a blast-wave model

    Get PDF
    The beam energy dependence of correlation lengths (the Hanbury-Brown-Twiss radii) is calculated by using a blast-wave model and the results are comparable with those from RHIC-STAR beam energy scan data as well as the LHC-ALICE measurements. A set of parameter for the blast-wave model as a function of beam energy under study are obtained by fit to the HBT radii at each energy point. The transverse momentum dependence of HBT radii is presented with the extracted parameters for Au + Au collision at sNN=\sqrt{s_{NN}} = 200 GeV and for Pb+Pb collisions at 2.76 TeV. From our study one can learn that particle emission duration can not be ignored while calculating the HBT radii with the same parameters. And tuning kinetic freeze-out temperature in a range will result in system lifetime changing in the reverse direction as it is found in RHIC-STAR experiment measurements.Comment: 9 pages, 9 figure

    Integrating blockchain with building information modelling (BIM): a systematic review based on a sociotechnical system perspective

    Get PDF
    Purpose: The purpose of this paper is to analyse the current state of research on the integration of blockchain and building information modelling (BIM) in the Architecture, Engineering, Construction and Operations (AECO) industry as a means of identifying gaps between the existing paradigm and practical applications for determining future research directions and improving the industry. The study aims to provide clear guidance on areas that need attention for further research and funding and to draw academic attention to factors beyond the technical dimension. Design/methodology/approach: A mixed-method systematic review is used, considering multiple literature types and using a sociotechnical perspective-based framework that covers three dimensions (technic, process and context) and three research elements (why, what and how). Data are retrieved and analysed from the Web of Science and Scopus databases for the 2017–2023 period. Findings: While blockchain has the potential to address security, traceability and transparency and complement the system by integrating supporting applications, significant gaps still exist between these potentials and widespread industry adoption. Current limitations and further research needs are identified, including designing fully integrated prototypes, empirical research to identify operational processes, testing and analysing operational-level models or applications and developing and applying a technology acceptance model for the integration paradigm. Previous research lacks contextual settings, real-world tests or empirical investigations and is primarily conceptual. Originality/value: This paper provides a comprehensive, critical systematic review of the integration of blockchain with BIM in the construction industry, using a sociotechnical perspective-based framework which can be applied in future reviews. The study provides insight into the current state and future opportunities for policymakers and practitioners in the AECO industry to prepare for the transition in this disruptive paradigm. It also provides a phased plan along with a clear direction for the transition to more advanced applications

    Two-Dimensional Ultrathin Silica Films

    Get PDF
    Two-dimensional (2D) ultrathin silica films have the potential to reach technological importance in electronics and catalysis. Several well-defined 2D-silica structures have been synthesized so far. The silica bilayer represents a 2D material with SiO2 stoichiometry. It consists of precisely two layers of tetrahedral [SiO4] building blocks, corner connected via oxygen bridges, thus forming a self-saturated silicon dioxide sheet with a thickness of ∼0.5 nm. Inspired by recent successful preparations and characterizations of these 2D-silica model systems, scientists now can forge novel concepts for realistic systems, particularly by atomic-scale studies with the most powerful and advanced surface science techniques and density functional theory calculations. This Review provides a solid introduction to these recent developments, breakthroughs, and implications on ultrathin 2D-silica films, including their atomic/electronic structures, chemical modifications, atom/molecule adsorptions, and catalytic reactivity properties, which can help to stimulate further investigations and understandings of these fundamentally important 2D materials

    Spheres and Prolate and Oblate Ellipsoids from an Analytical Solution of Spontaneous Curvature Fluid Membrane Model

    Full text link
    An analytic solution for Helfrich spontaneous curvature membrane model (H. Naito, M.Okuda and Ou-Yang Zhong-Can, Phys. Rev. E {\bf 48}, 2304 (1993); {\bf 54}, 2816 (1996)), which has a conspicuous feature of representing the circular biconcave shape, is studied. Results show that the solution in fact describes a family of shapes, which can be classified as: i) the flat plane (trivial case), ii) the sphere, iii) the prolate ellipsoid, iv) the capped cylinder, v) the oblate ellipsoid, vi) the circular biconcave shape, vii) the self-intersecting inverted circular biconcave shape, and viii) the self-intersecting nodoidlike cylinder. Among the closed shapes (ii)-(vii), a circular biconcave shape is the one with the minimum of local curvature energy.Comment: 11 pages, 11 figures. Phys. Rev. E (to appear in Sept. 1999
    • …
    corecore