12,462 research outputs found

    Yang-Yang thermodynamics on an atom chip

    Get PDF
    We investigate the behavior of a weakly interacting nearly one-dimensional (1D) trapped Bose gas at finite temperature. We perform in situ measurements of spatial density profiles and show that they are very well described by a model based on exact solutions obtained using the Yang-Yang thermodynamic formalism, in a regime where other, approximate theoretical approaches fail. We use Bose-gas focusing [Shvarchuck etal., Phys. Rev. Lett. 89, 270404 (2002)] to probe the axial momentum distribution of the gas, and find good agreement with the in situ results.Comment: extended introduction and conclusions, and minor changes throughout; accepted for publication in Phys. Rev. Let

    Box traps on an atom chip for one-dimensional quantum gases

    Get PDF
    We present the implementation of tailored trapping potentials for ultracold gases on an atom chip. We realize highly elongated traps with box-like confinement along the long, axial direction combined with conventional harmonic confinement along the two radial directions. The design, fabrication and characterization of the atom chip and the box traps is described. We load ultracold (1μ\lesssim1 \muK) clouds of 87^{87}Rb in a box trap, and demonstrate Bose-gas focusing as a means to characterize these atomic clouds in arbitrarily shaped potentials. Our results show that box-like axial potentials on atom chips are very promising for studies of one-dimensional quantum gases.Comment: 9 pages 4 figure

    Three-dimensional character of atom-chip-based rf-dressed potentials

    Full text link
    We experimentally investigate the properties of radio-frequency-dressed potentials for Bose-Einstein condensates on atom chips. The three-dimensional potential forms a connected pair of parallel waveguides. We show that rf-dressed potentials are robust against the effect of small magnetic-field variations on the trap potential. Long-lived dipole oscillations of condensates induced in the rf-dressed potentials can be tuned to a remarkably low damping rate. We study a beam-splitter for Bose-Einstein condensates and show that a propagating condensate can be dynamically split in two vertically separated parts and guided along two paths. The effect of gravity on the potential can be tuned and compensated for using a rf-field gradient.Comment: 9 pages, 7 figure

    Spin transport in graphene nanostructures

    Full text link
    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the spin relaxation length. However, the study of spin injection and transport in graphene nanostructures is highly unexplored. Here we study the spin injection and relaxation in nanostructured graphene with dimensions smaller than the spin relaxation length. For graphene nanoislands, where the edge length to area ratio is much higher than for standard devices, we show that enhanced spin-flip processes at the edges do not seem to play a major role in the spin relaxation. On the other hand, contact induced spin relaxation has a much more dramatic effect for these low dimensional structures. By studying the nonlocal spin transport through a graphene quantum dot we observe that the obtained values for spin relaxation are dominated by the connecting graphene islands and not by the quantum dot itself. Using a simple model we argue that future nonlocal Hanle precession measurements can obtain a more significant value for the spin relaxation time for the quantum dot by using high spin polarization contacts in combination with low tunneling rates

    Comparison of decision making and administrative organization for municipal water supplies in medium-sized and small Illinois municipalities

    Get PDF
    The study was designed to provide information on the decision making and organizational characteristics of municipally owned water systems in small and medium-sized Illinois municipalities, and to relate these characteristics to municipal as well as other water system characteristics. Data on the municipal water systems of 228 Illinois incorporated municipalities were gathered through mail and telephone surveys, as well as from secondary sources. The municipalities were chosen as part of a 50-percent sample, stratified by size, of all incorporated municipalities in Illinois with populations between 1,000 and 50,000. In addition to selected descriptive information on the water systems, the data are reported under water system decision making; planning and financial management; and technical management. Attempts to determine the relationships between the dependent variables and municipal and water system characteristics indicated a general weakness or absence of such relationships. While the quality of the data cannot be ruled out with certainty as the reason for the absence of the relationships, it is suggested that the relative lack of active interest on the part of municipalities in their water systems may account for the findings. The historical absence of the necessity to actively manage the water system other than in a routine fashion may have left these water systems quite unprepared to meet future sudden challenges.U.S. Department of the InteriorU.S. Geological SurveyOpe

    Yang-Yang thermodynamics on an atom chip

    Get PDF
    We investigate the behavior of a weakly interacting nearly one-dimensional (1D) trapped Bose gas at finite temperature. We perform in situ measurements of spatial density profiles and show that they are very well described by a model based on exact solutions obtained using the Yang-Yang thermodynamic formalism, in a regime where other, approximate theoretical approaches fail. We use Bose-gas focusing [Shvarchuck etal., Phys. Rev. Lett. 89, 270404 (2002)] to probe the axial momentum distribution of the gas, and find good agreement with the in situ results.Comment: extended introduction and conclusions, and minor changes throughout; accepted for publication in Phys. Rev. Let

    Finite-difference schemes for anisotropic diffusion

    Get PDF
    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10 to the 12 th times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretisation schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.</p

    Spin transport in high quality suspended graphene devices

    Get PDF
    We measure spin transport in high mobility suspended graphene (\mu ~ 10^5 cm^2/Vs), obtaining a (spin) diffusion coefficient of 0.1 m^2/s and giving a lower bound on the spin relaxation time (\tau_s ~ 150 ps) and spin relaxation length (\lambda_s=4.7 \mu m) for intrinsic graphene. We develop a theoretical model considering the different graphene regions of our devices that explains our experimental data.Comment: 22 pages, 6 figures; Nano Letters, Article ASAP (2012) (http://pubs.acs.org/doi/abs/10.1021/nl301050a

    Thermoluminescence of zircon: a kinetic model

    Get PDF
    The mineral zircon, ZrSiO4, belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing radiation, long-term storage, annealing at moderate temperatures and heating at a constant rate (TL measurements). To understand these processes one needs a kinetic model of TL. This paper is devoted to the construction of such amodel. The goal is to study the qualitative behaviour of the system and to determine the parameters and processes controlling TL phenomena of zircon. The model considers the following processes: (i) Filling of electron and hole traps at the excitation stage as a function of the dose rate and the dose for both (low dose rate) natural and (high dose rate) laboratory irradiation. (ii) Time dependence of TL fading in samples irradiated under laboratory conditions. (iii) Short time annealing at a given temperature. (iv) Heating of the irradiated sample to simulate TL experiments both after laboratory and natural irradiation. The input parameters of the model, such as the types and concentrations of the TL centres and the energy distributions of the hole and electron traps, were obtained by analysing the experimental data on fading of the TL-emission spectra of samples from different geological locations. Electron paramagnetic resonance (EPR) data were used to establish the nature of the TL centres. Glow curves and 3D TL emission spectra are simulated and compared with the experimental data on time-dependent TL fading. The saturation and annealing behaviour of filled trap concentrations has been considered in the framework of the proposed kinetic model and comparedwith the EPR data associated with the rare-earth ions Tb3+ and Dy3+, which play a crucial role as hole traps and recombination centres. Inaddition, the behaviour of some of the SiOmn− centres has been compared with simulation results.
    corecore