8,073 research outputs found

    Matrix product states and the quantum max-flow/min-cut conjectures

    Full text link
    In this note we discuss the geometry of matrix product states with periodic boundary conditions and provide three infinite sequences of examples where the quantum max-flow is strictly less than the quantum min-cut. In the first we fix the underlying graph to be a 4-cycle and verify a prediction of Hastings that inequality occurs for infinitely many bond dimensions. In the second we generalize this result to a 2d-cycle. In the third we show that the 2d-cycle with periodic boundary conditions gives inequality for all d when all bond dimensions equal two, namely a gap of at least 2^{d-2} between the quantum max-flow and the quantum min-cut.Comment: 12 pages, 3 figures - Final version accepted for publication on J. Math. Phy

    A Fresh Look at Entropy and the Second Law of Thermodynamics

    Full text link
    This paper is a non-technical, informal presentation of our theory of the second law of thermodynamics as a law that is independent of statistical mechanics and that is derivable solely from certain simple assumptions about adiabatic processes for macroscopic systems. It is not necessary to assume a-priori concepts such as "heat", "hot and cold", "temperature". These are derivable from entropy, whose existence we derive from the basic assumptions. See cond-mat/9708200 and math-ph/9805005.Comment: LaTex file. To appear in the April 2000 issue of PHYSICS TODA

    Secants of Lagrangian Grassmannians

    Full text link
    We study the dimensions of secant varieties of the Grassmannian of Lagrangian subspaces in a symplectic vector space. We calculate these dimensions for third and fourth secant varieties. Our result is obtained by providing a normal form for four general points on such a Grassmannian and by explicitly calculating the tangent spaces at these four points

    General pseudoadditivity of composable entropy prescribed by existence of equilibrium

    Full text link
    The concept of composability states that entropy of the total system composed of independent subsystems is a function of entropies of the subsystems. Here, the most general pseudoadditivity rule for composable entropy is derived based only on existence of equilibrium.Comment: 12 page

    Quasi-Homogeneous Thermodynamics and Black Holes

    Get PDF
    We propose a generalized thermodynamics in which quasi-homogeneity of the thermodynamic potentials plays a fundamental role. This thermodynamic formalism arises from a generalization of the approach presented in paper [1], and it is based on the requirement that quasi-homogeneity is a non-trivial symmetry for the Pfaffian form δQrev\delta Q_{rev}. It is shown that quasi-homogeneous thermodynamics fits the thermodynamic features of at least some self-gravitating systems. We analyze how quasi-homogeneous thermodynamics is suggested by black hole thermodynamics. Then, some existing results involving self-gravitating systems are also shortly discussed in the light of this thermodynamic framework. The consequences of the lack of extensivity are also recalled. We show that generalized Gibbs-Duhem equations arise as a consequence of quasi-homogeneity of the thermodynamic potentials. An heuristic link between this generalized thermodynamic formalism and the thermodynamic limit is also discussed.Comment: 39 pages, uses RevteX. Published version (minor changes w.r.t. the original one

    Representations of the exceptional and other Lie algebras with integral eigenvalues of the Casimir operator

    Full text link
    The uniformity, for the family of exceptional Lie algebras g, of the decompositions of the powers of their adjoint representations is well-known now for powers up to the fourth. The paper describes an extension of this uniformity for the totally antisymmetrised n-th powers up to n=9, identifying (see Tables 3 and 6) families of representations with integer eigenvalues 5,...,9 for the quadratic Casimir operator, in each case providing a formula (see eq. (11) to (15)) for the dimensions of the representations in the family as a function of D=dim g. This generalises previous results for powers j and Casimir eigenvalues j, j<=4. Many intriguing, perhaps puzzling, features of the dimension formulas are discussed and the possibility that they may be valid for a wider class of not necessarily simple Lie algebras is considered.Comment: 16 pages, LaTeX, 1 figure, 9 tables; v2: presentation improved, typos correcte

    Ultraperipheral photoproduction of vector mesons in the nuclear Coulomb field and the size of neutral vector mesons

    Full text link
    We point out a significance of ultraperipheral photoproduction of vector mesons in the Coulomb field of nuclei as a means of measuring the radius of the neutral vector meson. This new contribution to the production amplitude is very small compared to the conventional diffractive amplitude, but because of large impact parameters inherent to the ultraperipheral Coulomb mechanism its impact on the diffraction slope is substantial. We predict appreciable and strongly energy dependent increase of the diffraction slope towards very small momentum transfer.The magnitude of the effect is proportional to the mean radius squared of the vector meson and is within the reach of high precision photoproduction experiments, which gives a unique experimental handle on the size of vector mesons

    Notes on the Third Law of Thermodynamics.I

    Get PDF
    We analyze some aspects of the third law of thermodynamics. We first review both the entropic version (N) and the unattainability version (U) and the relation occurring between them. Then, we heuristically interpret (N) as a continuity boundary condition for thermodynamics at the boundary T=0 of the thermodynamic domain. On a rigorous mathematical footing, we discuss the third law both in Carath\'eodory's approach and in Gibbs' one. Carath\'eodory's approach is fundamental in order to understand the nature of the surface T=0. In fact, in this approach, under suitable mathematical conditions, T=0 appears as a leaf of the foliation of the thermodynamic manifold associated with the non-singular integrable Pfaffian form δQrev\delta Q_{rev}. Being a leaf, it cannot intersect any other leaf S=S= const. of the foliation. We show that (N) is equivalent to the requirement that T=0 is a leaf. In Gibbs' approach, the peculiar nature of T=0 appears to be less evident because the existence of the entropy is a postulate; nevertheless, it is still possible to conclude that the lowest value of the entropy has to belong to the boundary of the convex set where the function is defined.Comment: 29 pages, 2 figures; RevTex fil

    Chemical Potential and the Nature of the Dark Energy: The case of phantom

    Full text link
    The influence of a possible non zero chemical potential μ\mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state (EoS), p=ωρp=\omega \rho (ω<0,constant\omega <0, constant). The entropy condition, S0S \geq 0, implies that the possible values of ω\omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For μ>0\mu >0, the ω\omega-parameter must be greater than -1 (vacuum is forbidden) while for μ<0\mu < 0 not only the vacuum but even a phantomlike behavior (ω<1\omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, μ/T=μ0/T0\mu/T=\mu_0/T_0. Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons μ\mu is always negative and the extended Wien's law allows only a dark component with ω<1/2\omega < -1/2 which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for μ0\mu 0 are permmited only if 1<ω<1/2-1 < \omega < -1/2. The thermodynamics and statistical arguments constrain the EoS parameter to be ω<1/2\omega < -1/2, a result surprisingly close to the maximal value required to accelerate a FRW type universe dominated by matter and dark energy (ω10/21\omega \lesssim -10/21).Comment: 7 pages, 5 figure

    Four lectures on secant varieties

    Full text link
    This paper is based on the first author's lectures at the 2012 University of Regina Workshop "Connections Between Algebra and Geometry". Its aim is to provide an introduction to the theory of higher secant varieties and their applications. Several references and solved exercises are also included.Comment: Lectures notes to appear in PROMS (Springer Proceedings in Mathematics & Statistics), Springer/Birkhause
    corecore