3,009 research outputs found
Recommended from our members
The Abundances Of Polyacetylenes Toward CRL618
We present a mid-infrared high spectral resolution spectrum of CRL618 in the frequency ranges 778-784 and 1227-1249 cm(-1) (8.01-8.15 and 12.75-12.85 mu m) taken with the Texas Echelon-cross-Echelle Spectrograph (TEXES) and the Infrared Telescope Facility (IRTF). We have identified more than 170 rovibrational lines arising from C2H2, HCN, C4H2, and C6H2. We have found no unmistakable trace of C8H2. The line profiles display a complex structure suggesting the presence of polyacetylenes in several components of the circumstellar envelope (CSE). We derive total column densities of 2.5x10(17), 3.1x10(17), 2.1x10(17), 9.3x10(16) cm(-2), and less than or similar to 5x10(16) cm(-2) for HCN, C2H2, C4H2, C6H2, and C8H2, respectively. The observations indicate that both the rotational and vibrational temperatures in the innermost CSE depend on the molecule, varying from 100 to 350 K for the rotational temperatures and 100 to 500 K for the vibrational temperatures. Our results support a chemistry in the innermost CSE based on radical-neutral reactions triggered by the intense UV radiation field.Spanish Ministerio de Educacion y Ciencia ESP2004-665, AYA2003-2785"Comunidad de Madrid" government S-0505/ESP-0237European Community MCRTN-CT-2004-51230CSICCONACyT SEP-2004-C01-47090UNAMNSF AST-0708074Astronom
The Infrared Nucleus of the Wolf-Rayet Galaxy Henize 2-10
We have obtained near-infrared images and mid-infrared spectra of the
starburst core of the dwarf Wolf-Rayet galaxy He 2-10. We find that the
infrared continuum and emission lines are concentrated in a flattened ellipse
3-4'' or 150 pc across which may show where a recent accretion event has
triggered intense star formation. The ionizing radiation from this cluster has
an effective temperature of 40,000 K, corresponding to stars, and
the starburst is years old.Comment: 17 pages Latex, 7 postscript figures, 1 postscript table, accepted to
A
Ionized Gas in the Galactic Center: New Observations and Interpretation
We present new observations of the [Ne II] emission from the ionized gas in
Sgr A West with improved resolution and sensitivity. About half of the emission
comes from gas with kinematics indicating it is orbiting in a plane tipped
about 25\degree\ from the Galactic plane. This plane is consistent with that
derived previously for the circumnuclear molecular disk and the northern arm
and western arc ionized features. However, unlike most previous studies, we
conclude that the ionized gas is not moving along the ionized features, but on
more nearly circular paths. The observed speeds are close to, but probably
somewhat less than expected for orbital motions in the potential of the central
black hole and stars and have a small inward component. The spatial
distribution of the emission is well fitted by a spiral pattern. We discuss
possible physical explanations for the spatial distribution and kinematics of
the ionized gas, and conclude that both may be best explained by a one-armed
spiral density wave, which also accounts for both the observed low velocities
and the inward velocity component. We suggest that a density wave may result
from the precession of elliptical orbits in the potential of the black hole and
stellar mass distribution.Comment: 28 pages, 13 figures, ApJ in pres
Observation of Infrared and Radio Lines of Molecules toward GL2591 and Comparison to Physical and Chemical Models
We have observed rovibrational transitions of acetylene and HCN near 13
microns in absorption toward GL2591. We also observed rotational lines of CS,
HCN, H2CO, and HCO+. The combined data are analyzed in terms of models with a
cloud envelope with density gradients and discrete regions of hot, dense gas,
probably near the infrared source. The abundance of HCN is enhanced by a factor
of 400 in the gas producing the infrared absorption, in agreement with chemical
models which involve depletion of molecules onto grains and subsequent
sublimation when temperatures are raised.Comment: 34 pages, postscript with 14 postscript figure files, uuencoded
compressed and tar'ed; unpacks self with csh. In case of problems, contact
[email protected]
The eight micron band of silicon monoxide in the expanding cloud around VY Canis Majoris
Observations of vibration-rotation transitions of silicon monoxide in VY CMa show that the lines originate in accelerating, expanding, and cool (600 K) layers of a circumstellar cloud at a distance of roughly 0.15 minutes from the central star. The central stellar velocity, as estimated from observed SiO P Cygni line profiles, is somewhat redshifted from the midpoint of the maser emission features. Most of the silicon is probably in the form of dust grains. The isotopic ratios of silicon are nearly terrestrial
High resolution spectroscopy of the 11.3 micron emission band
High resolution spectra of the 11.3 micron emission band in M82 and NGC 7027 were obtained using the University of Texas IR echelle spectrometer on the IRTF in April 1988. The spectral resolution was 0.004 micron, with coverage from 11.0 to 11.6 microns. Spectra were measured at ten positions along a 10 min. long slit. Analysis of the data is still in progress, but initial results show no clear evidence of narrow structure within the feature. The analysis will involve comparison of the observed spectra to laboratory and predicted spectra of Polycylic Aromatic Hydrocarbons (PAHs) and Quenched Carbonaceous Composite (QCCs) to determine which may be responsible for the emission. The spectra will be examined with a goal of determining whether the emission is caused by molecular or solid state material. The data are also examined for evidence of variations in the shape and strength of the 11.3 micron feature with position on the sky. In NGC 7027 the 10 min. long slit went across the edge of the ionized nebulae, allowing comparison of emission from both ionized and neutral regions
R=100,000 Spectroscopy of Photodissociation Regions: H2 Rotational Lines in the Orion Bar
Ground state rotational lines of H2 are good temperature probes of moderately
hot (200-1000 K) gas. The low A-values of these lines result in low critical
densities while ensuring that the lines are optically thin. ISO observations of
H2 rotational lines in PDRs reveal large quantities of warm gas that are
difficult to explain via current models, but the spatial resolution of ISO does
not resolve the temperature structure of the warm gas. We present and discuss
high spatial resolution observations of H2 rotational line emission from the
Orion Bar.Comment: 4 pages, 1 figure, Proceedings of the ESO Workshop on High Resolution
Infrared Spectroscop
- âŠ