18,618 research outputs found

    Does the Targeted Jobs Tax Credit Create Jobs at Subsidized Firms?

    Get PDF
    This paper uses the results of a survey of more than 3,500 private employers to determine whether use of the Targeted Jobs Tax Credit (TJTC) alters the level of a firm\u27s employment and/or whom the firm hires. We estimate that each subsidized hire generates between .13 and .3 new jobs at a participating firm. Use of the program also appears to induce employers to hire more young workers (age 25 and under). Our results suggest, however, that at least 70 percent of the tax credits granted employers are payments for workers who would have been hired even without the subsidy. Such payments represent mere transfers to employers

    Low-energy parameters and spin gap of a frustrated spin-ss Heisenberg antiferromagnet with s32s \leq \frac{3}{2} on the honeycomb lattice

    Full text link
    The coupled cluster method is implemented at high orders of approximation to investigate the zero-temperature (T=0)(T=0) phase diagram of the frustrated spin-ss J1J_{1}--J2J_{2}--J3J_{3} antiferromagnet on the honeycomb lattice. The system has isotropic Heisenberg interactions of strength J1>0J_{1}>0, J2>0J_{2}>0 and J3>0J_{3}>0 between nearest-neighbour, next-nearest-neighbour and next-next-nearest-neighbour pairs of spins, respectively. We study it in the case J3=J2κJ1J_{3}=J_{2}\equiv \kappa J_{1}, in the window 0κ10 \leq \kappa \leq 1 that contains the classical tricritical point (at κcl=12\kappa_{{\rm cl}}=\frac{1}{2}) of maximal frustration, appropriate to the limiting value ss \to \infty of the spin quantum number. We present results for the magnetic order parameter MM, the triplet spin gap Δ\Delta, the spin stiffness ρs\rho_{s} and the zero-field transverse magnetic susceptibility χ\chi for the two collinear quasiclassical antiferromagnetic (AFM) phases with N\'{e}el and striped order, respectively. Results for MM and Δ\Delta are given for the three cases s=12s=\frac{1}{2}, s=1s=1 and s=32s=\frac{3}{2}, while those for ρs\rho_{s} and χ\chi are given for the two cases s=12s=\frac{1}{2} and s=1s=1. On the basis of all these results we find that the spin-12\frac{1}{2} and spin-1 models both have an intermediate paramagnetic phase, with no discernible magnetic long-range order, between the two AFM phases in their T=0T=0 phase diagrams, while for s>1s > 1 there is a direct transition between them. Accurate values are found for all of the associated quantum critical points. While the results also provide strong evidence for the intermediate phase being gapped for the case s=12s=\frac{1}{2}, they are less conclusive for the case s=1s=1. On balance however, at least the transition in the latter case at the striped phase boundary seems to be to a gapped intermediate state

    Phase Transitions in the Spin-Half J_1--J_2 Model

    Full text link
    The coupled cluster method (CCM) is a well-known method of quantum many-body theory, and here we present an application of the CCM to the spin-half J_1--J_2 quantum spin model with nearest- and next-nearest-neighbour interactions on the linear chain and the square lattice. We present new results for ground-state expectation values of such quantities as the energy and the sublattice magnetisation. The presence of critical points in the solution of the CCM equations, which are associated with phase transitions in the real system, is investigated. Completely distinct from the investigation of the critical points, we also make a link between the expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state correlation coefficients. We are thus able to present evidence of the breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively, given (to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure

    The DSUBmm Approximation Scheme for the Coupled Cluster Method and Applications to Quantum Magnets

    Full text link
    A new approximate scheme, DSUBmm, is described for the coupled cluster method. We then apply it to two well-studied (spin-1/2 Heisenberg antiferromagnet) spin-lattice models, namely: the XXZXXZ and the XYXY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the sublattice magnetization and the quantum critical point. They are in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods and those from the CCM using the LSUBmm scheme.Comment: 18 pages, 10 figure

    High-Order Coupled Cluster Method Calculations for the Ground- and Excited-State Properties of the Spin-Half XXZ Model

    Full text link
    In this article, we present new results of high-order coupled cluster method (CCM) calculations, based on a N\'eel model state with spins aligned in the zz-direction, for both the ground- and excited-state properties of the spin-half {\it XXZ} model on the linear chain, the square lattice, and the simple cubic lattice. In particular, the high-order CCM formalism is extended to treat the excited states of lattice quantum spin systems for the first time. Completely new results for the excitation energy gap of the spin-half {\it XXZ} model for these lattices are thus determined. These high-order calculations are based on a localised approximation scheme called the LSUBmm scheme in which we retain all kk-body correlations defined on all possible locales of mm adjacent lattice sites (kmk \le m). The ``raw'' CCM LSUBmm results are seen to provide very good results for the ground-state energy, sublattice magnetisation, and the value of the lowest-lying excitation energy for each of these systems. However, in order to obtain even better results, two types of extrapolation scheme of the LSUBmm results to the limit mm \to \infty (i.e., the exact solution in the thermodynamic limit) are presented. The extrapolated results provide extremely accurate results for the ground- and excited-state properties of these systems across a wide range of values of the anisotropy parameter.Comment: 31 Pages, 5 Figure

    Resonances, Unstable Systems and Irreversibility: Matter Meets Mind

    Full text link
    The fundamental time-reversal invariance of dynamical systems can be broken in various ways. One way is based on the presence of resonances and their interactions giving rise to unstable dynamical systems, leading to well-defined time arrows. Associated with these time arrows are semigroups bearing time orientations. Usually, when time symmetry is broken, two time-oriented semigroups result, one directed toward the future and one directed toward the past. If time-reversed states and evolutions are excluded due to resonances, then the status of these states and their associated backwards-in-time oriented semigroups is open to question. One possible role for these latter states and semigroups is as an abstract representation of mental systems as opposed to material systems. The beginnings of this interpretation will be sketched.Comment: 9 pages. Presented at the CFIF Workshop on TimeAsymmetric Quantum Theory: The Theory of Resonances, 23-26 July 2003, Instituto Superior Tecnico, Lisbon, Portugal; and at the Quantum Structures Association Meeting, 7-22 July 2004, University of Denver. Accepted for publication in the Internation Journal of Theoretical Physic

    Frustrated spin-12\frac{1}{2} Heisenberg magnet on a square-lattice bilayer: High-order study of the quantum critical behavior of the J1J_{1}--J2J_{2}--J1J_{1}^{\perp} model

    Full text link
    The zero-temperature phase diagram of the spin-12\frac{1}{2} J1J_{1}--J2J_{2}--J1J_{1}^{\perp} model on an AAAA-stacked square-lattice bilayer is studied using the coupled cluster method implemented to very high orders. Both nearest-neighbor (NN) and frustrating next-nearest-neighbor Heisenberg exchange interactions, of strengths J1>0J_{1}>0 and J2κJ1>0J_{2} \equiv \kappa J_{1}>0, respectively, are included in each layer. The two layers are coupled via a NN interlayer Heisenberg exchange interaction with a strength J1δJ1J_{1}^{\perp} \equiv \delta J_{1}. The magnetic order parameter MM (viz., the sublattice magnetization) is calculated directly in the thermodynamic (infinite-lattice) limit for the two cases when both layers have antiferromagnetic ordering of either the N\'{e}el or the striped kind, and with the layers coupled so that NN spins between them are either parallel (when δ0\delta 0) to one another. Calculations are performed at nnth order in a well-defined sequence of approximations, which exactly preserve both the Goldstone linked cluster theorem and the Hellmann-Feynman theorem, with n10n \leq 10. The sole approximation made is to extrapolate such sequences of nnth-order results for MM to the exact limit, nn \to \infty. By thus locating the points where MM vanishes, we calculate the full phase boundaries of the two collinear AFM phases in the κ\kappa--δ\delta half-plane with κ>0\kappa > 0. In particular, we provide the accurate estimate, (κ0.547,δ0.45\kappa \approx 0.547,\delta \approx -0.45), for the position of the quantum triple point (QTP) in the region δ<0\delta < 0. We also show that there is no counterpart of such a QTP in the region δ>0\delta > 0, where the two quasiclassical phase boundaries show instead an ``avoided crossing'' behavior, such that the entire region that contains the nonclassical paramagnetic phases is singly connected

    Effects of harvesting methods on sustainability of a bay scallop fishery: dredging uproots seagrass and displaces recruits

    Get PDF
    Fishing is widely recognized to have profound effects on estuarine and marine ecosystems (Hammer and Jansson, 1993; Dayton et al., 1995). Intense commercial and recreational harvest of valuable species can result in population collapses of target and nontarget species (Botsford et al., 1997; Pauly et al., 1998; Collie et al. 2000; Jackson et al., 2001). Fishing gear, such as trawls and dredges, that are dragged over the seafloor inflict damage to the benthic habitat (Dayton et al., 1995; Engel and Kvitek, 1995; Jennings and Kaiser, 1998; Watling and Norse, 1998). As the growing human population, over-capitalization, and increasing government subsidies of fishing place increasing pressures on marine resources (Myers, 1997), a clear understanding of the mechanisms by which fishing affects coastal systems is required to craft sustainable fisheries management
    corecore