478 research outputs found

    The Use of a Large, Extensive Green Roof for Multiple Research Objectives

    Get PDF
    The Green Roof on the Onondaga County Convention Center in Syracuse, NY is planted with several varieties of sedum over an area of 0.56 hectares. The roof was constructed in 2011, and has been instrumented with sensors to enable research and education over an extended period. The purpose of the current work on this roof is to quantify its performance with respect to water storage and energy transfer, and to identify chemical constituents in the runoff that might be contributed by the growth medium. The scope of the project also includes a number of measurements on traditional roofs in the vicinity of the Convention Center as controls. Experimental methods include measurements with temperature probes installed in different layers of the green roof, a meteorological station, soil moisture sensors positioned around the roof, and an electromagnetic flowmeter connected to the roof drains. Chemical analysis of incoming precipitation and stormwater runoff is conducted by ion chromatography. Besides the research underway, an educational website is under construction that shows realtime data from many of the instruments. The website includes explanations of the energy flow through the roof layers, water flow and water storage in the growth medium, and runoff through the roof drains. The website is designed for use by teachers of K-12 and undergraduate courses to enable students to learn about green roofs as a tool for managing urban stormwater. Results of the research show that heat flow through the roof is largely controlled by extruded polystyrene insulation below the growth medium, and that the growth medium is not a major barrier to heat flow. Substantial amounts of stormwater can be stored by the roof, as long as the growth medium is able to dry somewhat between storms. Precipitation events in close succession may cause the growth medium to stay saturated, preventing the roof from storing additional stormwater. The results of this work are important for assisting designers and engineers to improve the performance of green roofs

    Amiloride derivatives enhance insulin release in pancreatic islets from diabetic mice

    Get PDF
    BACKGROUND: Amiloride derivatives, commonly used for their diuretic and antihypertensive properties, can also cause a sustained but reversible decrease of intracellular pH (pH(i)). Using dimethyl amiloride (DMA) on normal rodent pancreatic islets, we previously demonstrated the critical influence of islet pH(i )on insulin secretion. Nutrient-stimulated insulin secretion (NSIS) requires a specific pH(i)-range, and is dramatically enhanced by forced intracellular acidification with DMA. Furthermore, DMA can enable certain non-secretagogues to stimulate insulin secretion, and induce time-dependent potentiation (TDP) of insulin release in mouse islets where this function is normally absent. The present study was performed to determine whether pH(i)-manipulation could correct the secretory defect in islets isolated from mice with type 2 diabetes. METHODS: Using two mouse models of type 2 diabetes, we compared a) pHi-regulation, and b) NSIS with and without treatment with amiloride derivatives, in islets isolated from diabetic mice and wild type mice. RESULTS: A majority of the islets from the diabetic mice showed a slightly elevated basal pH(i )and/or poor recovery from acid/base load. DMA treatment produced a significant increase of NSIS in islets from the diabetic models. DMA also enabled glucose to induce TDP in the islets from diabetic mice, albeit to a lesser degree than in normal islets. CONCLUSION: Islets from diabetic mice show some mis-regulation of intracellular pH, and their secretory capacity is consistently enhanced by DMA/amiloride. Thus, amiloride derivatives show promise as potential therapeutic agents for type 2 diabetes

    Wearable Bluetooth Triage Healthcare Monitoring System.

    Get PDF
    Triage is the first interaction between a patient and a nurse/paramedic. This assessment, usually performed at Emergency departments, is a highly dynamic process and there are international grading systems that according to the patient condition initiate the patient journey. Triage requires an initial rapid assessment followed by routine checks of the patients' vitals, including respiratory rate, temperature, and pulse rate. Ideally, these checks should be performed continuously and remotely to reduce the workload on triage nurses; optimizing tools and monitoring systems can be introduced and include a wearable patient monitoring system that is not at the expense of the patient's comfort and can be remotely monitored through wireless connectivity. In this study, we assessed the suitability of a small ceramic piezoelectric disk submerged in a skin-safe silicone dome that enhances contact with skin, to detect wirelessly both respiration and cardiac events at several positions on the human body. For the purposes of this evaluation, we fitted the sensor with a respiratory belt as well as a single lead ECG, all acquired simultaneously. To complete Triage parameter collection, we also included a medical-grade contact thermometer. Performances of cardiac and respiratory events detection were assessed. The instantaneous heart and respiratory rates provided by the proposed sensor, the ECG and the respiratory belt were compared via statistical analyses. In all considered sensor positions, very high performances were achieved for the detection of both cardiac and respiratory events, except for the wrist, which provided lower performances for respiratory rates. These promising yet preliminary results suggest the proposed wireless sensor could be used as a wearable, hands-free monitoring device for triage assessment within emergency departments. Further tests are foreseen to assess sensor performances in real operating environments

    Response to “Comment on ‘Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid’” [J.Chem.Phys. 151, 017101 (2019)]

    Get PDF
    The Classical Nucleation Theory (CNT) describes the Gibbs free energy cost to create a crystallite of N atoms out of a metastable phase as follows: ΔG = −N|Δμ| + γA. (1) The first term gives the Gibbs free energy cost to create a crystallite of N atoms in its bulk phase. The term Δμ = μc − μl is the thermodynamic driving force, where μc and μl are the chemical potentials of bulk crystal and liquid phases. The second part is the contribution from the solid-liquid interface, where γ is the solid-liquid interfacial free energy and A is the area of the interface. The driving force is estimated with bulk properties of liquid and crystal phases. The interfacial free energy γ = γ0 is often estimated from its planar interface value γ0, the capillarity approximation. These independently estimated quantities lead to a nucleation profile, where the critical nucleus locates at the maximum of the profile and the resulting nucleation barrier can be used to estimate the nucleation rate. It has been a long standing goal of the classical nucleation theory to be able to predict accurate nucleation rate from these independently estimated thermodynamical properties

    Biphasic activation of complement and fibrinolysis during the human nasal allergic response

    Get PDF
    Complement, coagulation and fibrinolysis contribute to the pathology of many respiratory diseases. Here we detail the biphasic activation of these pathways following nasal allergen challenge. Understanding these mechanisms may lead to therapeutic insight in common respiratory diseases

    Use of Photocatalysis for Degradation of Glyphosate in Potable Water of CKDu Prevalent Areas

    Get PDF
    Glyphosate, which is commercially available as Roundup®, was the most widely used herbicide in Sri Lanka until recently. Recent studies report the presence of glyphosate in different water sources (drinking water, surface water, groundwater) in the Chronic Kidney Disease of unknown etiology (CKDu) prevalent areas containing elevated hardness levels. Additionally, WHO studies conducted in 2013, provide evidence of the presence of glyphosate in trace levels in urine samples of CKDu subjects. Thus, glyphosate is suspected to be one of the causal factors for CKDu and its removal, when present in potable water with high hardness levels, is a challenging engineering task. Photocatalysis is recognised to be one of the promising technologies for degradation of glyphosate. Hence, this study focuses on investigating the effectiveness and efficiency of the photocatalysis process for degradation of glyphosate from potable waters containing high hardness levels. Experiments were conducted with high purity Glyphosate and Roundup® in the absence (0 mg/l as CaCO3) and presence of hardness (1,500 mg/l as CaCO3). A sunlight activated water purifier bag available in the market that consists of a Titanium Dioxide membrane was used for application of the photocatalysis process. A 3.0 L water sample containing Glyphosate/Roundup® (glyphosate concentration 1 mg/L) was continuously exposed to sunlight for six (06) hours. A solar irradiance meter was used to measure the sunlight intensity. Samples from the reaction solution were collected at predetermined time intervals and analysed for glyphosate and amninomethyphosphonic acid (AMPA) using GC/MS and LC/MS in the absence and presence of hardness, respectively. A rapid decrease in glyphosate concentration to levels below 0.7 mg/l (USEPA Maximum Contaminant Level) was observed during the first 60 minutes of reaction time under all experimental conditions studied. The concentration of AMPA detected was below the level of quantification in all experiments implying that complete degradation of Glyphosate has occurred until inorganic phosphate is produced. When using high purity glyphosate or Roundup®, slower degradation rates were observed in the presence of hardness compared to that in the absence of hardness. Retardation of glyphosate degradation in the presence of hardness could be attributed to the enhanced persistence of glyphosate due to the formation of glyphosate-Ca and -Mg complexes when hardness is present in water. Similarly, slower degradation rates were observed with Roundup® compared to that of with high purity glyphosate, both in the absence and presence of hardness. The presence of the major adjuvant surfactant [polyethoxylatedtallowamine, (POEA)], which is introduced as an inert ingredient during Roundup® production seems to have enhanced the persistence of glyphosate in water thus causing retardation of Glyphosate degradation by the photocatalysis process. In conclusion, photocatalysis is an effective and efficient technique that could be used to degrade glyphosate in potable water of CKDu prevalent areas in spite of the possible antagonistic effects observed on Glyphosate degradation due to the presence of hardness and/or surfactants.Keywords: CKDu, Glyphosate, Photocatalysi

    Wearable bluetooth triage healthcare monitoring system

    Get PDF
    Triage is the first interaction between a patient and a nurse/paramedic. This assessment, usually performed at Emergency departments, is a highly dynamic process and there are international grading systems that according to the patient condition initiate the patient journey. Triage requires an initial rapid assessment followed by routine checks of the patients’ vitals, including respiratory rate, temperature, and pulse rate. Ideally, these checks should be performed continuously and remotely to reduce the workload on triage nurses; optimizing tools and monitoring systems can be introduced and include a wearable patient monitoring system that is not at the expense of the patient’s comfort and can be remotely monitored through wireless connectivity. In this study, we assessed the suitability of a small ceramic piezoelectric disk submerged in a skin-safe silicone dome that enhances contact with skin, to detect wirelessly both respiration and cardiac events at several positions on the human body. For the purposes of this evaluation, we fitted the sensor with a respiratory belt as well as a single lead ECG, all acquired simultaneously. To complete Triage parameter collection, we also included a medical-grade contact thermometer. Performances of cardiac and respiratory events detection were assessed. The instantaneous heart and respiratory rates provided by the proposed sensor, the ECG and the respiratory belt were compared via statistical analyses. In all considered sensor positions, very high performances were achieved for the detection of both cardiac and respiratory events, except for the wrist, which provided lower performances for respiratory rates. These promising yet preliminary results suggest the proposed wireless sensor could be used as a wearable, hands-free monitoring device for triage assessment within emergency departments. Further tests are foreseen to assess sensor performances in real operating environments

    Real-time EMG based pattern recognition control for hand prostheses : a review on existing methods, challenges and future implementation

    Get PDF
    Upper limb amputation is a condition that significantly restricts the amputees from performing their daily activities. The myoelectric prosthesis, using signals from residual stump muscles, is aimed at restoring the function of such lost limbs seamlessly. Unfortunately, the acquisition and use of such myosignals are cumbersome and complicated. Furthermore, once acquired, it usually requires heavy computational power to turn it into a user control signal. Its transition to a practical prosthesis solution is still being challenged by various factors particularly those related to the fact that each amputee has different mobility, muscle contraction forces, limb positional variations and electrode placements. Thus, a solution that can adapt or otherwise tailor itself to each individual is required for maximum utility across amputees. Modified machine learning schemes for pattern recognition have the potential to significantly reduce the factors (movement of users and contraction of the muscle) affecting the traditional electromyography (EMG)-pattern recognition methods. Although recent developments of intelligent pattern recognition techniques could discriminate multiple degrees of freedom with high-level accuracy, their efficiency level was less accessible and revealed in real-world (amputee) applications. This review paper examined the suitability of upper limb prosthesis (ULP) inventions in the healthcare sector from their technical control perspective. More focus was given to the review of real-world applications and the use of pattern recognition control on amputees. We first reviewed the overall structure of pattern recognition schemes for myo-control prosthetic systems and then discussed their real-time use on amputee upper limbs. Finally, we concluded the paper with a discussion of the existing challenges and future research recommendations

    Closed Aromatic Tubes-Capsularenes

    Get PDF
    In this study, we describe a synthetic method for incorporating arenes into closed tubes that we name capsularenes. First, we prepared vase-shaped molecular baskets 4–7. The baskets comprise a benzene base fused to three bicycle[2.2.1]heptane rings that extend into phthalimide (4), naphthalimide (6), and anthraceneimide sides (7), each carrying a dimethoxyethane acetal group. In the presence of catalytic trifluoroacetic acid (TFA), the acetals at top of 4, 6 and 7 change into aliphatic aldehydes followed by their intramolecular cyclization into 1,3,5-trioxane (1H NMR spectroscopy). Such ring closure is nearly a quantitative process that furnishes differently sized capsularenes 1 (0.7×0.9 nm), 8 (0.7×1.1 nm;) and 9 (0.7×1.4 nm;) characterized by X-Ray crystallography, microcrystal electron diffraction, UV/Vis, fluorescence, cyclic voltammetry, and thermogravimetry. With exceptional rigidity, unique topology, great thermal stability, and perhaps tuneable optoelectronic characteristics, capsularenes hold promise for the construction of novel organic electronic devices
    corecore