166 research outputs found

    Simple Analytic Models of Gravitational Collapse

    Full text link
    Most general relativity textbooks devote considerable space to the simplest example of a black hole containing a singularity, the Schwarzschild geometry. However only a few discuss the dynamical process of gravitational collapse, by which black holes and singularities form. We present here two types of analytic models for this process, which we believe are the simplest available; the first involves collapsing spherical shells of light, analyzed mainly in Eddington-Finkelstein coordinates; the second involves collapsing spheres filled with a perfect fluid, analyzed mainly in Painleve-Gullstrand coordinates. Our main goal is pedagogical simplicity and algebraic completeness, but we also present some results that we believe are new, such as the collapse of a light shell in Kruskal-Szekeres coordinates.Comment: Submitted to American Journal of Physic

    Painleve-Gullstrand Coordinates for the Kerr Solution

    Full text link
    We construct a coordinate system for the Kerr solution, based on the zero angular momentum observers dropped from infinity, which generalizes the Painleve-Gullstrand coordinate system for the Schwarzschild solution. The Kerr metric can then be interpreted as describing space flowing on a (curved) Riemannian 3-manifold. The stationary limit arises as the set of points on this manifold where the speed of the flow equals the speed of light, and the horizons as the set of points where the radial speed equals the speed of light. A deeper analysis of what is meant by the flow of space reveals that the acceleration of free-falling objects is generally not in the direction of this flow. Finally, we compare the new coordinate system with the closely related Doran coordinate system.Comment: 6 pages; v2: new section, matches final published version; v3: sign error in the expression of the function delta correcte

    Fermion absorption cross section of a Schwarzschild black hole

    Full text link
    We study the absorption of massive spin-half particles by a small Schwarzschild black hole by numerically solving the single-particle Dirac equation in Painleve-Gullstrand coordinates. We calculate the absorption cross section for a range of gravitational couplings Mm/m_P^2 and incident particle energies E. At high couplings, where the Schwarzschild radius R_S is much greater than the wavelength lambda, we find that the cross section approaches the classical result for a point particle. At intermediate couplings we find oscillations around the classical limit whose precise form depends on the particle mass. These oscillations give quantum violations of the equivalence principle. At high energies the cross section converges on the geometric-optics value of 27 \pi R_S^2/4, and at low energies we find agreement with an approximation derived by Unruh. When the hole is much smaller than the particle wavelength we confirm that the minimum possible cross section approaches \pi R_S^2/2.Comment: 11 pages, 3 figure

    Hawking radiation in an electro-magnetic wave-guide?

    Full text link
    It is demonstrated that the propagation of electro-magnetic waves in an appropriately designed wave-guide is (for large wave-lengths) analogous to that within a curved space-time -- such as around a black hole. As electro-magnetic radiation (e.g., micro-weaves) can be controlled, amplified, and detected (with present-day technology) much easier than sound, for example, we propose a set-up for the experimental verification of the Hawking effect. Apart from experimentally testing this striking prediction, this would facilitate the investigation of the trans-Planckian problem. PACS: 04.70.Dy, 04.80.-y, 42.50.-p, 84.40.Az.Comment: 4 pages RevTeX, 1 figur

    Circular orbits and spin in black-hole initial data

    Get PDF
    The construction of initial data for black-hole binaries usually involves the choice of free parameters that define the spins of the black holes and essentially the eccentricity of the orbit. Such parameters must be chosen carefully to yield initial data with the desired physical properties. In this paper, we examine these choices in detail for the quasiequilibrium method coupled to apparent-horizon/quasiequilibrium boundary conditions. First, we compare two independent criteria for choosing the orbital frequency, the "Komar-mass condition" and the "effective-potential method," and find excellent agreement. Second, we implement quasi-local measures of the spin of the individual holes, calibrate these with corotating binaries, and revisit the construction of non-spinning black hole binaries. Higher-order effects, beyond those considered in earlier work, turn out to be important. Without those, supposedly non-spinning black holes have appreciable quasi-local spin; furthermore, the Komar-mass condition and effective potential method agree only when these higher-order effects are taken into account. We compute a new sequence of quasi-circular orbits for non-spinning black-hole binaries, and determine the innermost stable circular orbit of this sequence.Comment: 24 pages, 17 figures, accepted for publication in Physical Review D, revtex4; Fixed error in computing proper separation and updated figures and tables accordingly, added reference to Sec. IV.A, fixed minor error in Sec. IV.B, added new data to Tables IV and V, fixed 1 reference, fixed error in Eq. (A7b), included minor changes from PRD editin

    Transgressing the horizons: Time operator in two-dimensional dilaton gravity

    Get PDF
    We present a Dirac quantization of generic single-horizon black holes in two-dimensional dilaton gravity. The classical theory is first partially reduced by a spatial gauge choice under which the spatial surfaces extend from a black or white hole singularity to a spacelike infinity. The theory is then quantized in a metric representation, solving the quantum Hamiltonian constraint in terms of (generalized) eigenstates of the ADM mass operator and specifying the physical inner product by self-adjointness of a time operator that is affinely conjugate to the ADM mass. Regularity of the time operator across the horizon requires the operator to contain a quantum correction that distinguishes the future and past horizons and gives rise to a quantum correction in the hole's surface gravity. We expect a similar quantum correction to be present in systems whose dynamics admits black hole formation by gravitational collapse.Comment: 32 pages, 1 eps figure. v2: references and comments adde

    The Gravitational Hamiltonian in the Presence of Non-Orthogonal Boundaries

    Get PDF
    This paper generalizes earlier work on Hamiltonian boundary terms by omitting the requirement that the spacelike hypersurfaces ÎŁt\Sigma_t intersect the timelike boundary B\cal B orthogonally. The expressions for the action and Hamiltonian are calculated and the required subtraction of a background contribution is discussed. The new features of a Hamiltonian formulation with non-orthogonal boundaries are then illustrated in two examples.Comment: 23 pages, 1 figure, LaTeX. The action is altered to include a corner term which results in a different value for the non-orthogonal term. An additional appendix with Euclidean results is included. To appear in Class. Quant. Gra

    The Jang equation, apparent horizons, and the Penrose inequality

    Full text link
    The Jang equation in the spherically symmetric case reduces to a first order equation. This permits an easy analysis of the role apparent horizons play in the (non)existence of solutions. We demonstrate that the proposed derivation of the Penrose inequality based on the Jang equation cannot work in the spherically symmetric case. Thus it is fruitless to apply this method, as it stands, to the general case. We show also that those analytic criteria for the formation of horizons that are based on the use of the Jang equation are of limited validity for the proof of the trapped surface conjecture.Comment: minor misprints correcte

    Riemannian geometry of irrotational vortex acoustics

    Full text link
    We consider acoustic propagation in an irrotational vortex, using the technical machinery of differential geometry to investigate the ``acoustic geometry'' that is probed by the sound waves. The acoustic space-time curvature of a constant circulation hydrodynamical vortex leads to deflection of phonons at appreciable distances from the vortex core. The scattering angle for phonon rays is shown to be quadratic in the small quantity Γ/(2πcb)\Gamma/(2\pi cb), where Γ\Gamma is the vortex circulation, cc the speed of sound, and bb the impact parameter.Comment: 4 pages, 2 figures, RevTex4. Discussion of focal length added; to appear in Physical Review Letter

    Counting a black hole in Lorentzian product triangulations

    Full text link
    We take a step toward a nonperturbative gravitational path integral for black-hole geometries by deriving an expression for the expansion rate of null geodesic congruences in the approach of causal dynamical triangulations. We propose to use the integrated expansion rate in building a quantum horizon finder in the sum over spacetime geometries. It takes the form of a counting formula for various types of discrete building blocks which differ in how they focus and defocus light rays. In the course of the derivation, we introduce the concept of a Lorentzian dynamical triangulation of product type, whose applicability goes beyond that of describing black-hole configurations.Comment: 42 pages, 11 figure
    • …
    corecore