5 research outputs found

    On the conjugacy problem in certain metabelian groups

    Get PDF
    We analyze the computational complexity of an algorithm to solve the conjugacy search problem in a certain family of metabelian groups. We prove that in general the time complexity of the conjugacy search problem for these groups is at most exponential. For a subfamily of groups, we prove that the conjugacy search problem is polynomial. We also show that for a different subfamily the conjugacy search problem reduces to the discrete logarithm problem

    Efficient and Secure Delegation of Exponentiation in General Groups to a Single Malicious Server

    Get PDF
    Group exponentiation is an important and relatively expensive operation used in many public-key cryptosystems and, more generally, cryptographic protocols. To expand the applicability of these solutions to computationally weaker devices, it has been advocated that this operation is delegated from a computationally weaker client to a computationally stronger server. Solving this problem in the case of a single, possibly malicious, server, has remained open since the introduction of a formal model. In previous work we have proposed practical and secure solutions applicable to two classes of specific groups, related to well-known cryptosystems. In this paper, we investigate this problem in a general class of multiplicative groups, possibly going beyond groups currently subject to quantum cryptanalysis attacks. Our main results are efficient delegation protocols for exponentiation in these general groups. The main technique in our results is a reduction of the protocol's security probability (i.e., the probability that a malicious server convinces a client of an incorrect exponentiation output) that is more efficient than by standard parallel repetition. The resulting protocols satisfy natural requirements such as correctness, security, privacy and efficiency, even if the adversary uses the full power of quantum computers. In particular, in our protocols the client performs a number of online group multiplications smaller by 1 to 2 orders of magnitude than in a non-delegated computation

    Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR

    Get PDF
    The segmentation of medical and dental images is a fundamental step in automated clinical decision support systems. It supports the entire clinical workflow from diagnosis, therapy planning, intervention, and follow-up. In this paper, we propose a novel tool to accurately process a full-face segmentation in about 5 minutes that would otherwise require an average of 7h of manual work by experienced clinicians. This work focuses on the integration of the state-of-the-art UNEt TRansformers (UNETR) of the Medical Open Network for Artificial Intelligence (MONAI) framework. We trained and tested our models using 618 de-identified Cone-Beam Computed Tomography (CBCT) volumetric images of the head acquired with several parameters from different centers for a generalized clinical application. Our results on a 5-fold cross-validation showed high accuracy and robustness with a Dice score up to 0.962±0.02. Our code is available on our public GitHub repository

    Prediction of Postoperative Deterioration in Cardiac Surgery Patients Using Electronic Health Record and Physiologic Waveform Data

    Full text link
    BACKGROUND: Postoperative hemodynamic deterioration among cardiac surgical patients can indicate or lead to adverse outcomes. Whereas prediction models for such events using electronic health records or physiologic waveform data are previously described, their combined value remains incompletely defined. The authors hypothesized that models incorporating electronic health record and processed waveform signal data (electrocardiogram lead II, pulse plethysmography, arterial catheter tracing) would yield improved performance versus either modality alone. METHODS: Intensive care unit data were reviewed after elective adult cardiac surgical procedures at an academic center between 2013 and 2020. Model features included electronic health record features and physiologic waveforms. Tensor decomposition was used for waveform feature reduction. Machine learning-based prediction models included a 2013 to 2017 training set and a 2017 to 2020 temporal holdout test set. The primary outcome was a postoperative deterioration event, defined as a composite of low cardiac index of less than 2.0 ml min-1 m-2, mean arterial pressure of less than 55 mmHg sustained for 120 min or longer, new or escalated inotrope/vasopressor infusion, epinephrine bolus of 1 mg or more, or intensive care unit mortality. Prediction models analyzed data 8 h before events. RESULTS: Among 1,555 cases, 185 (12%) experienced 276 deterioration events, most commonly including low cardiac index (7.0% of patients), new inotrope (1.9%), and sustained hypotension (1.4%). The best performing model on the 2013 to 2017 training set yielded a C-statistic of 0.803 (95% CI, 0.799 to 0.807), although performance was substantially lower in the 2017 to 2020 test set (0.709, 0.705 to 0.712). Test set performance of the combined model was greater than corresponding models limited to solely electronic health record features (0.641; 95% CI, 0.637 to 0.646) or waveform features (0.697; 95% CI, 0.693 to 0.701). CONCLUSIONS: Clinical deterioration prediction models combining electronic health record data and waveform data were superior to either modality alone, and performance of combined models was primarily driven by waveform data. Decreased performance of prediction models during temporal validation may be explained by data set shift, a core challenge of healthcare prediction modeling.http://deepblue.lib.umich.edu/bitstream/2027.42/175153/2/Deterioration after Cardiac Surgery - EHR and Waveform Data.pdfPublished versio

    Predicting atrial fibrillation episodes with rapid ventricular rates associated with low levels of activity

    Full text link
    Abstract Background Rapid and irregular ventricular rates (RVR) are an important consequence of atrial fibrillation (AF). Raw accelerometry data in combination with electrocardiogram (ECG) data have the potential to distinguish inappropriate from appropriate tachycardia in AF. This can allow for the development of a just-in-time intervention for clinical treatments of AF events. The objective of this study is to develop a machine learning algorithm that can distinguish episodes of AF with RVR that are associated with low levels of activity. Methods This study involves 45 patients with persistent or paroxysmal AF. The ECG and accelerometer data were recorded continuously for up to 3 weeks. The prediction of AF episodes with RVR and low activity was achieved using a deterministic probabilistic finite-state automata (DPFA)-based approach. Rapid and irregular ventricular rate (RVR) is defined as having heart rates (HR) greater than 110 beats per minute (BPM) and high activity is defined as greater than 0.75 quantile of the activity level. The AF events were annotated using the FDA-cleared BeatLogic algorithm. Various time intervals prior to the events were used to determine the longest prediction intervals for predicting AF with RVR episodes associated with low levels of activity. Results Among the 961 annotated AF events, 292 met the criterion for RVR episode. There were 176 and 116 episodes with low and high activity levels respectively. Out of the 961 AF episodes, 770 (80.1%) were used in the training data set and the remaining 191 intervals were held out for testing. The model was able to predict AF with RVR and low activity up to 4.5 min before the events. The mean prediction performance gradually decreased as the time to events increased. The overall Area under the ROC Curve (AUC) for the model lies within the range of 0.67–0.78. Conclusion The DPFA algorithm can predict AF with RVR associated with low levels of activity up to 4.5 min before the onset of the event. This would enable the development of just-in-time interventions that could reduce the morbidity and mortality associated with AF and other similar arrhythmias.http://deepblue.lib.umich.edu/bitstream/2027.42/173608/1/12911_2021_Article_1723.pd
    corecore