4 research outputs found

    A unified call to action from Australian nursing and midwifery leaders: Ensuring that Black lives matter

    No full text
    Nurses and midwives of Australia now is the time for change! As powerfully placed, Indigenous and non-Indigenous nursing and midwifery professionals, together we can ensure an effective and robust Indigenous curriculum in our nursing and midwifery schools of education. Today, Australia finds itself in a shifting tide of social change, where the voices for better and safer health care ring out loud. Voices for justice, equity and equality reverberate across our cities, our streets, homes, and institutions of learning. It is a call for new songlines of reform. The need to embed meaningful Indigenous health curricula is stronger now than it ever was for Australian nursing and midwifery. It is essential that nursing and midwifery leadership continue to build an authentic collaborative environment for Indigenous curriculum development. Bipartisan alliance is imperative for all academic staff to be confident in their teaching and learning experiences with Indigenous health syllabus. This paper is a call out. Now is the time for Indigenous and non-Indigenous nurses and midwives to make a stand together, for justice and equity in our teaching, learning, and practice. Together we will dismantle systems, policy, and practices in health that oppress. The Black Lives Matter movement provides us with a ‘now window’ of accepted dialogue to build a better, culturally safe Australian nursing and midwifery workforce, ensuring that Black Lives Matter in all aspects of health care

    Influx of nitrogen-rich material from the outer Solar System indicated by iron nitride in Ryugu samples

    No full text
    Large amounts of nitrogen compounds, such as ammonium salts, may be stored in icy bodies and comets, but the transport of these nitrogen-bearing solids into the near-Earth region is not well understood. Here, we report the discovery of iron nitride on magnetite grains from the surface of the near-Earth C-type carbonaceous asteroid Ryugu, suggesting inorganic nitrogen fixation. Micrometeoroid impacts and solar wind irradiation may have caused the selective loss of volatile species from major iron-bearing minerals to form the metallic iron. Iron nitride is a product of nitridation of the iron metal by impacts of micrometeoroids that have higher nitrogen contents than the CI chondrites. The impactors are probably primitive materials with origins in the nitrogen-rich reservoirs in the outer Solar System. Our observation implies that the amount of nitrogen available for planetary formation and prebiotic reactions in the inner Solar System is greater than previously recognized

    Phyllosilicates with embedded Fe-based nanophases in Ryugu and Orgueil

    Full text link
    Samples were recently collected from the carbonaceous asteroid (162173) Ryugu, by the Japan Aerospace Exploration Agency (JAXA) Hayabusa2 mission. They resemble CI chondrites material, thus showing clear evidence of extensive aqueous alteration attested by the widespread presence of a mixture of serpentine and saponite. We present here a scanning transmission electron microscopy study of the Ryugu dominant lithology of the phyllosilicate matrix at the nanometer scale, which we compare with that of the Orgueil CI chondrite. In both objects, the phyllosilicates are of comparable nature and texture, consisting of a mixture of small-sized crystallites of serpentine and saponite. At the micrometer scale or less, the texture is an alternation of fine and coarse domains. The fine-grained regions are dominated by saponite. In Ryugu, they enclose numerous Fe,Ni nanosulfides, whereas in Orgueil, S- and Ni-rich ferrihydrite is abundant. The coarse-grained regions contain more serpentine and no or little Fe,Ni sulfides or ferrihydrite. Scanning transmission x-ray microscopy at the Fe-L3 edge also reveals that iron valency of phyllosilicates is higher and more homogeneous in Orgueil (~70% Fe3+) than in Ryugu (<50% Fe3+). We interpret the observed textures as being mostly a consequence of aqueous alteration, likely resulting from the replacement by phyllosilicates of submicrometric components, initially agglomerated by a primary accretion. The fine-grained domains may result from the replacement of GEMS (GEMS—glass with embedded metal and sulfides) objects or from other types of nanometric assemblages of silicate and Fe-based nanophases. On the other hand, the coarse-grained regions may correspond to the replacement of anhydrous crystalline silicates of the olivine and pyroxene type. The major difference is the presence of Fe,Ni sulfides in Ryugu and of ferrihydrite and higher iron valency of phyllosilicates in Orgueil. This might be due to long-term terrestrial weathering that would have destabilized the nanosulfides. We also explore an alternative scenario involving more oxidizing hydrothermal conditions on the Orgueil parent body.</p

    Mineralogy and petrology of fine-grained samples recovered from the asteroid (162173) Ryugu

    Full text link
    Samples returned from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 mission revealed that Ryugu is composed of materials consistent with CI chondrites and some types of space weathering. We report detailed mineralogy of the fine-grained Ryugu samples allocated to our “Sand” team and report additional space weathering features found on the grains. The dominant mineralogy is composed of a fine-grained mixture of Mg-rich saponite and serpentine, magnetite, pyrrhotite, pentlandite, dolomite, and Fe-bearing magnesite. These grains have mineralogy comparable to that of CI chondrites, showing severe aqueous alteration but lacking ferrihydrite and sulfate. These results are similar to previous works on large Ryugu grains. In addition to the major minerals, we also find many minerals that are rare or have not been reported among CI chondrites. Accessory minerals identified are hydroxyapatite, Mg-Na phosphate, olivine, low-Ca pyroxene, Mg-Al spinel, chromite, manganochromite, eskolaite, ilmenite, cubanite, polydymite, transjordanite, schreibersite, calcite, moissanite, and poorly crystalline phyllosilicate. We also show scanning transmission electron microscope and scanning electron microscope compositional maps and images of some space-weathered grains and severely heated and melted grains. Although our mineralogical results are consistent with that of millimeter-sized grains, the fine-grained fraction is best suited to investigate impact-induced space weathering.</p
    corecore