2 research outputs found

    Gaia Focused Product Release: Spatial distribution of two diffuse interstellar bands

    No full text
    Diffuse interstellar bands (DIBs) are absorption features seen in optical and infrared spectra of stars and extragalactic objects that are probably caused by large and complex molecules in the galactic interstellar medium (ISM). Here we investigate the Galactic distribution and properties of two DIBs identified in almost six million stellar spectra collected by the Gaia Radial Velocity Spectrometer. These measurements constitute a part of the Gaia Focused Product Release to be made public between the Gaia DR3 and DR4 data releases. In order to isolate the DIB signal from the stellar features in each individual spectrum, we identified a set of 160 000 spectra at high Galactic latitudes (|b| ≥ 65) covering a range of stellar parameters which we consider to be the DIB-free reference sample. Matching each target spectrum to its closest reference spectra in stellar parameter space allowed us to remove the stellar spectrum empirically, without reference to stellar models, leaving a set of six million ISM spectra. Using the star's parallax and sky coordinates, we then allocated each ISM spectrum to a voxel (VOlume piXEL) on a contiguous three-dimensional grid with an angular size of 1.8 (level 5 HEALPix) and 29 unequally sized distance bins. Identifying the two DIBs at 862.1 nm (λ862.1) and 864.8 nm (λ864.8) in the stacked spectra, we modelled their shapes and report the depth, central wavelength, width, and equivalent width (EW) for each, along with confidence bounds on these measurements. We then explored the properties and distributions of these quantities and compared them with similar measurements from other surveys. Our main results are as follows: (1) the strength and spatial distribution of the DIB λ862.1 are very consistent with what was found in Gaia DR3, but for this work we attained a higher signal-to-noise ratio in the stacked spectra to larger distances, which allowed us to trace DIBs in the outer spiral arm and beyond the Scutum-Centaurus spiral arm; (2) we produced an all-sky map below ±65 of Galactic latitude to ∼4000 pc of both DIB features and their correlations; (3) we detected the signals of DIB λ862.1 inside the Local Bubble (≲200 pc); and (4) there is a reasonable correlation with the dust reddening found from stellar absorption and EWs of both DIBs with a correlation coefficient of 0.90 for λ862.1 and 0.77 for λ864.8.</p

    Gaia Data Release 2: The kinematics of globular clusters and dwarf galaxies around the Milky Way

    Full text link
    Aims. The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds.Methods. Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community.Results. Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.1-2.6+6.2 × 1011 M⊙ based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud.Conclusions. All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.</div
    corecore