73 research outputs found

    Evaluation of biogenic amines in the faeces of children with and without autism by LC-MS/MS

    Full text link
    Previous researchers have postulated that gastrointestinal bacteria may contribute to the development and maintenance of Autism Spectrum Disorders (ASD). There is evidence based on quantitative evaluation of the gastrointestinal bacterial population in ASD that this is unlikely and an alternate mechanism will be examined where the bacteria may contribute to the development of ASD via their metabolic products and the role of biogenic amines (BAs) will be investigated. In humans, BAs influence a number of physiological processes via their actions as neurotransmitters, local hormones and gastric acid secretion. Various amines have been implicated in several medical conditions such as schizophrenia and colon cancer. To date, the relationship between BAs and autism has not been explored. This study has been designed to identify differences (and/or similarities) in the level of Bas in faecal samples of autistic children (without gastrointestinal dysfunction: n = 14; with gastrointestinal dysfunction; n = 21) and their neurotypical siblings (n = 35) by LC-MS/MS. Regardless of the diagnosis, severity of ASD and gastrointestinal dysfunction there were no significant differences found between the groups. The findings suggest that BAs in the gastrointestinal tract do not play a role in the pathophysiology of gastrointestinal dysfunction associated with ASD

    Effect of Bacilli Calmette-Guerin vaccine on severe combined immunodeficiency patient: a narrative review and proposed workup algorithm

    Get PDF
    This systematic review critically investigates the administration of the Bacillus Calmette-Guérin (BCG) vaccine in neonates with severe combined immunodeficiency (SCID). The BCG vaccine, derived from Mycobacterium bovis, is a live attenuated vaccine recognized for its significant role in mitigating the impacts of tuberculosis (TB) in endemic areas. Despite its beneficial effects in controlling TB, safety and efficacy concerns have been raised when the vaccine is administered to SCID patients, who have a severe dysfunction or absence of the immune system. The potential for the vaccine to lead to severe complications due to the immunocompromised state of SCID patients necessitates a comprehensive investigation. To better understand these issues, a thorough literature review was carried out, integrating data from clinical trials and observational studies available on the PubMed database. An extensive review and analysis of 32 relevant articles revealed substantial evidence of complications from BCG vaccination in SCID patients. These findings emphasize the urgency for a more effective pre-vaccination screening process to circumvent potential adverse effects. Given the crucial role of the BCG vaccine in controlling TB, its potential to induce severe complications in SCID patients warrants careful consideration. Therefore, this review proposes an in-depth screening algorithm for newborns before BCG vaccination administration. The goal is to prevent these adverse events, offering critical insights to health policymakers, researchers, and clinicians in the field

    Precision health in behaviour change interventions: A scoping review

    Get PDF
    Precision health seeks to optimise behavioural interventions by delivering personalised support to those in need, when and where they need it. Conceptualised a decade ago, progress toward this vision of personally relevant and effective population-wide interventions continues to evolve. This scoping review aimed to map the state of precision health behaviour change intervention research. This review included studies from a broader precision health review. Six databases were searched for studies published between January 2010 and June 2020, using the terms ‘precision health’ or its synonyms, and including an intervention targeting modifiable health behaviour(s) that was evaluated experimentally. Thirty-one studies were included, 12 being RCTs (39 %), and 17 with weak study design (55 %). Most interventions targeted physical activity (27/31, 87 %) and/or diet (24/31, 77 %), with 74% (23/31) targeting two to four health behaviours. Interventions were personalised via human interaction in 55 % (17/31) and digitally in 35 % (11/31). Data used for personalising interventions was largely self-reported, by survey or diary (14/31, 45 %), or digitally (14/31, 45 %). Data was mostly behavioural or lifestyle (20/31, 65 %), and physiologic, biochemical or clinical (15/31, 48 %), with no studies utilising genetic/genomic data. This review demonstrated that precision health behaviour change interventions remain dependent on human-led, low-tech personalisation, and have not fully considered the interaction between behaviour and the social and environmental contexts of individuals. Further research is needed to understand the relationship between personalisation and intervention effectiveness, working toward the development of sophisticated and scalable behaviour change interventions that have tangible public health impact

    Mesoamerican nephropathy: a narrative review

    Get PDF
    Mesoamerican nephropathy (MeN) also known as chronic kidney disease of unknown etiology (CKDu) is prevalent in agriculturally rich areas. The most widely accepted pathophysiological explanation for MeN is chronic dehydration caused by prolonged exposure to the sun. Other theories include oxidative stress, chronic inflammation, infection and tubulointerstitial fibrosis. The clinical presentation is quite vague and is diagnosed similar to CKD from any cause using blood, urine analysis and ultrasound. The study highlights the need for interdisciplinary cooperation among physicians, epidemiologists, toxicologists, and geneticists while identifying significant research gaps and future objectives. Occupational health related to agriculture is not emphasised enough especially in third world countries where a large chunk of population heavily depend on farming. To safeguard the population at risk, the significance of community-based initiatives, occupational health measures, and regulatory changes is emphasised

    Mechanical unloading activates FoxO3 to trigger Bnip3‐dependent cardiomyocyte atrophy

    Get PDF
    BACKGROUND: Mechanical assist device therapy has emerged recently as an important and rapidly expanding therapy in advanced heart failure, triggering in some patients a beneficial reverse remodeling response. However, mechanisms underlying this benefit are unclear. METHODS AND RESULTS: In a model of mechanical unloading of the left ventricle, we observed progressive myocyte atrophy, autophagy, and robust activation of the transcription factor FoxO3, an established regulator of catabolic processes in other cell types. Evidence for FoxO3 activation was similarly detected in unloaded failing human myocardium. To determine the role of FoxO3 activation in cardiac muscle in vivo, we engineered transgenic mice harboring a cardiomyocyte‐specific constitutively active FoxO3 mutant (caFoxO3(flox);αMHC‐Mer‐Cre‐Mer). Expression of caFoxO3 triggered dramatic and progressive loss of cardiac mass, robust increases in cardiomyocyte autophagy, declines in mitochondrial biomass and function, and early mortality. Whereas increases in cardiomyocyte apoptosis were not apparent, we detected robust increases in Bnip3 (Bcl2/adenovirus E1B 19‐kDa interacting protein 3), an established downstream target of FoxO3. To test the role of Bnip3, we crossed the caFoxO3(flox);αMHC‐Mer‐Cre‐Mer mice with Bnip3‐null animals. Remarkably, the atrophy and autophagy phenotypes were significantly blunted, yet the early mortality triggered by FoxO3 activation persisted. Rather, declines in cardiac performance were attenuated by proteasome inhibitors. Consistent with involvement of FoxO3‐driven activation of the ubiquitin‐proteasome system, we detected time‐dependent activation of the atrogenes program and sarcomere protein breakdown. CONCLUSIONS: In aggregate, these data point to FoxO3, a protein activated by mechanical unloading, as a master regulator that governs both the autophagy‐lysosomal and ubiquitin‐proteasomal pathways to orchestrate cardiac muscle atrophy

    Genome-wide Association Study of Susceptibility to Particulate Matter–Associated QT Prolongation

    Get PDF
    BACKGROUND: Ambient particulate matter (PM) air pollution exposure has been associated with increases in QT interval duration (QT). However, innate susceptibility to PM-associated QT prolongation has not been characterized. OBJECTIVE: To characterize genetic susceptibility to PM-associated QT prolongation in a multi-racial/ethnic, genome-wide association study (GWAS). METHODS: Using repeated electrocardiograms (1986–2004), longitudinal data on PM<10 μm in diameter (PM10), and generalized estimating equations methods adapted for low-prevalence exposure, we estimated approximately 2.5×106 SNP×PM10 interactions among nine Women’s Health Initiative clinical trials and Atherosclerosis Risk in Communities Study subpopulations (n=22,158), then combined subpopulation-specific results in a fixed-effects, inverse variance-weighted meta-analysis. RESULTS: A common variant (rs1619661; coded allele: T) significantly modified the QT-PM10 association (p=2.11×10−8). At PM10 concentrations >90th percentile, QT increased 7 ms across the CC and TT genotypes: 397 (95% confidence interval: 396, 399) to 404 (403, 404) ms. However, QT changed minimally across rs1619661 genotypes at lower PM10 concentrations. The rs1619661 variant is on chromosome 10, 132 kilobase (kb) downstream from CXCL12, which encodes a chemokine, stromal cell-derived factor 1, that is expressed in cardiomyocytes and decreases calcium influx across the L-type Ca2+ channel. CONCLUSIONS: The findings suggest that biologically plausible genetic factors may alter susceptibility to PM10-associated QT prolongation in populations protected by the U.S. Environmental Protection Agency’s National Ambient Air Quality Standards. Independent replication and functional characterization are necessary to validate our findings. https://doi.org/10.1289/EHP34

    An Integrative Cross-Omics Analysis of DNA Methylation Sites of Glucose and Insulin Homeostasis

    Get PDF
    Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D

    Epigenetically mediated electrocardiographic manifestations of sub-chronic exposures to ambient particulate matter air pollution in the Women's Health Initiative and Atherosclerosis Risk in Communities Study

    Get PDF
    Background: Short-duration exposure to ambient particulate matter (PM) air pollution is associated with cardiac autonomic dysfunction and prolonged ventricular repolarization. However, associations with sub-chronic exposures to coarser particulates are relatively poorly characterized as are molecular mechanisms underlying their potential relationships with cardiovascular disease. Materials and methods: We estimated associations between monthly mean concentrations of PM &lt; 10 μm and 2.5–10 μm in diameter (PM10; PM2.5-10) with time-domain measures of heart rate variability (HRV) and QT interval duration (QT) among U.S. women and men in the Women's Health Initiative and Atherosclerosis Risk in Communities Study (nHRV = 82,107; nQT = 76,711). Then we examined mediation of the PM-HRV and PM-QT associations by DNA methylation (DNAm) at three Cytosine-phosphate-Guanine (CpG) sites (cg19004594, cg24102420, cg12124767) with known sensitivity to monthly mean PM concentrations in a subset of the participants (nHRV = 7,169; nQT = 6,895). After multiply imputing missing PM, electrocardiographic and covariable data, we estimated associations using attrition-weighted, linear, mixed, longitudinal models adjusting for sociodemographic, behavioral, meteorological, and clinical characteristics. We assessed mediation by estimating the proportions of PM-HRV and PM-QT associations mediated by DNAm. Results: We found little evidence of PM-HRV association, PM-QT association, or mediation by DNAm. Conclusions: The findings suggest that among racially/ethnically and environmentally diverse U.S. populations, sub-chronic exposures to coarser particulates may not exert appreciable, epigenetically mediated effects on cardiac autonomic function or ventricular repolarization. Further investigation in better-powered studies is warranted, with additional focus on shorter duration exposures to finer particulates and non-electrocardiographic outcomes among relatively susceptible populations

    Leukocyte traits and exposure to ambient particulate matter air pollution in the women’s health initiative and atherosclerosis risk in communities study

    Get PDF
    BACKGROUND: Inflammatory effects of ambient particulate matter (PM) air pollution exposures may underlie PM-related increases in cardiovascular disease risk and mortality, although evidence of PM-associated leukocytosis is inconsistent and largely based on small, cross-sectional, and/or unrepresentative study populations. OBJECTIVES: Our objective was to estimate PM–leukocyte associations among U.S. women and men in the Women’s Health Initiative and Atherosclerosis Risk in Communities study (n = 165,675). METHODS: We based the PM–leukocyte estimations on up to four study visits per participant, at which peripheral blood leukocytes and geocoded address-specific concentrations of PM ≤ 10, ≤2:5, and 2:5–10 lm in diameter (PM10, PM2:5, and PM2:5–10, respectively) were available. We multiply imputed missing data using chained equations and estimated PM–leukocyte count associations over daily to yearly PM exposure averaging periods using center-specific, linear, mixed, longitudinal models weighted for attrition and adjusted for sociodemographic, behavioral, meteorological, and geographic covariates. In a subset of participants with available data (n = 8,457), we also estimated PM–leukocyte proportion associations in compositional data analyses. RESULTS: We found a 12 cells=lL (95% confidence interval: −9, 33) higher leukocyte count, a 1.2% (0.6%, 1.8%) higher granulocyte proportion, and a −1:1% (−1:9%, −0:3%) lower CD8+ T-cell proportion per 10-lg=m3 increase in 1-month mean PM2:5. However, shorter-duration PM10 exposures were inversely and only modestly associated with leukocyte count. DISCUSSION: The PM2:5 –leukocyte estimates, albeit imprecise, suggest that among racially, ethnically, and environmentally diverse U.S. populations, sustained, ambient exposure to fine PM may induce subclinical, but epidemiologically important, inflammatory effects. https://doi.org/10.1289/EHP5360

    Genome-wide association study and meta-analysis identify loci associated with ventricular and supraventricular ectopy

    Get PDF
    The genetic basis of supraventricular and ventricular ectopy (SVE, VE) remains largely uncharacterized, despite established genetic mechanisms of arrhythmogenesis. To identify novel genetic variants associated with SVE/VE in ancestrally diverse human populations, we conducted a genome-wide association study of electrocardiographically identified SVE and VE in five cohorts including approximately 43,000 participants of African, European and Hispanic/Latino ancestry. In thirteen ancestry-stratified subgroups, we tested multivariable-adjusted associations of SVE and VE with single nucleotide polymorphism (SNP) dosage. We combined subgroup-specific association estimates in inverse variance-weighted, fixed-effects and Bayesian meta-analyses. We also combined fixed-effects meta-analytic t-test statistics for SVE and VE in multi-trait SNP association analyses. No loci reached genome-wide significance in trans-ethnic meta-analyses. However, we found genome-wide significant SNPs intronic to an apoptosis-enhancing gene previously associated with QRS interval duration (FAF1; lead SNP rs7545860; effect allele frequency = 0.02; P = 2.0 × 10-8) in multi-trait analysis among European ancestry participants and near a locus encoding calcium-dependent glycoproteins (DSC3; lead SNP rs8086068; effect allele frequency = 0.17) in meta-analysis of SVE (P = 4.0 × 10-8) and multi-trait analysis (P = 2.9 × 10-9) among African ancestry participants. The novel findings suggest several mechanisms by which genetic variation may predispose to ectopy in humans and highlight the potential value of leveraging pleiotropy in future studies of ectopy-related phenotypes
    corecore