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BACKGROUND: Inflammatory effects of ambient particulate matter (PM) air pollution exposures may underlie PM-related increases in cardiovascular
disease risk and mortality, although evidence of PM-associated leukocytosis is inconsistent and largely based on small, cross-sectional, and/or unrep-
resentative study populations.
OBJECTIVES: Our objective was to estimate PM–leukocyte associations amongU.S. women andmen in theWomen’s Health Initiative andAtherosclerosis Risk
inCommunities study (n=165,675).
METHODS: We based the PM–leukocyte estimations on up to four study visits per participant, at which peripheral blood leukocytes and geocoded
address-specific concentrations of PM≤ 10, ≤2:5, and 2:5–10 lm in diameter (PM10, PM2:5, and PM2:5–10, respectively) were available. We multiply
imputed missing data using chained equations and estimated PM–leukocyte count associations over daily to yearly PM exposure averaging periods
using center-specific, linear, mixed, longitudinal models weighted for attrition and adjusted for sociodemographic, behavioral, meteorological, and ge-
ographic covariates. In a subset of participants with available data (n=8,457), we also estimated PM–leukocyte proportion associations in composi-
tional data analyses.

RESULTS:We found a 12 cells=lL (95% confidence interval: −9, 33) higher leukocyte count, a 1.2% (0.6%, 1.8%) higher granulocyte proportion, and
a −1:1% (−1:9%, −0:3%) lower CD8+ T-cell proportion per 10-lg=m3 increase in 1-month mean PM2:5. However, shorter-duration PM10 exposures
were inversely and only modestly associated with leukocyte count.
DISCUSSION: The PM2:5–leukocyte estimates, albeit imprecise, suggest that among racially, ethnically, and environmentally diverse U.S. populations, sus-
tained, ambient exposure to fine PM may induce subclinical, but epidemiologically important, inflammatory effects. https://doi.org/10.1289/EHP5360

Introduction
Exposures to airborne particulate matter (PM) ≤10, ≤2:5 and
between 2.5 and 10 lm in diameter (PM10, PM2:5, and PM2:5–10,

respectively) can trigger inflammatory responses that involve the
release and hematogenous redistribution of leukocytes (Pope et al.
2016; Tan et al. 2000; Terashima et al. 1997a). Such responses
may be key to the pathophysiology underpinning established asso-
ciations between ambient PM, cardiovascular (CVD) disease risk,
and mortality (Brook et al. 2010; Chi et al. 2016a; Di et al. 2017;
Miller et al. 2007; Parker et al. 2018). However, evidence of PM-
associated leukocytosis is inconsistent and mostly based on small
studies and panels with limited generalizability (Brook et al. 2009;
Dubowsky et al. 2006; Emmerechts et al. 2012; Ghio et al. 2003;
Gong et al. 2004; Huang et al. 2014; Jacobs et al. 2010; Mills et al.
2005, 2007; Pope et al. 2004, 2016; Riediker 2007; Salvi et al.
1999; Steenhof et al. 2014; Törnqvist et al. 2007).

In larger, community- and population-based studies, short-
duration PM10–leukocyte count associations are similarly incon-
sistent (Liao et al. 2005; Schwartz 2001; Seaton et al. 1999;
Steinvil et al. 2008), although longer-duration PM10– and PM2:5–
leukocyte count associations tend to be positive in published
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cross-sectional and longitudinal studies (Chen and Schwartz
2008; Chuang et al. 2011; Viehmann et al. 2015). Moreover,
associations between short- and longer-term PM exposures and
leukocyte count and its differential composition have not been
thoroughly evaluated while controlling for known relationships
among leukocyte traits (count and component proportions).

Associations between ambient PM exposures and leukocyte
traits could nevertheless lend support to the hypothesized role of
inflammation in PM-related pathogenesis. Furthermore, their mag-
nitude would provide insight into PM associations with leukocyte-
derived biomarkers such asDNAmethylation (DNAm), a heritable
but dynamic epigenetic modification that can influence gene
expression. Indeed, epidemiologic studies often rely on peripheral
blood leukocytes as a source of DNA for DNAm assays given the
relative ease with which they are collected and archived in large
populations (McCullough et al. 2017; Zhong et al. 2016). Because
DNAm and other epigenetic biomarkers (Beaulieu et al. 2017) dif-
fer among leukocyte subtypes [e.g., granulocytes vs. monocytes
(Houseman et al. 2012; Jaffe and Irizarry 2014)], leukocyte compo-
sitionmay plausibly mediate their associations with environmental
exposures.

To expand on prior work evaluating PM–leukocyte count
associations, and to address the limitations of studies examining
PM–leukocyte compositional associations, we estimated associa-
tions of leukocyte traits with short- to longer-duration exposures
to ambient PM2:5, PM10, and PM2:5–10 in large, multiracial/ethnic,
and geographically diverse United States populations enrolled in
the Women’s Health Initiative (WHI) and the Atherosclerosis
Risk in Communities (ARIC) study.

Methods

Study Populations
The WHI is a multicenter prospective study of risk factors for
CVD, breast/colorectal cancer, and osteoporotic fractures (Women’s
Health Initiative Study Group 1998, Anderson et al. 2003). From
forty clinical centers throughout the United States, postmenopausal
women aged 50–79 years of age were either randomized in the
Clinical Trials (CT; n=68,132) or enrolled in the Observational
Study (OS; n=93,676) between 1993 and 1998. The WHI CT
included three interventions: a) hormone therapy (i.e., estrogen with
or without progestin vs. placebo), b) calcium and vitamin D supple-
mentation (vs. placebo), and c) dietary modification (vs. usual diet).
The WHI OS (Women’s Health Initiative Study Group 1998,
Anderson et al. 2003) recruited participants interested in the die-
tary modification or hormone therapy trials of theWHI CT but were
otherwise ineligible, unwilling, or unresponsive to a direct invitation.

TheWHI CT and OS participants completed a baseline screen-
ing visit, at which fasting blood and other demographic, socioeco-
nomic, behavioral, and medical information was collected by
trained and certified staff. The present study additionally included
WHI CT participant data from triennial follow-up visits 3 and 6 y
after randomization (Annual Visits 3 and 6) and WHI OS partici-
pant data 3 y after enrollment (Annual Visit 3), at which fasting
bloodwas redrawn.

The ARIC study is a prospective epidemiologic study of ath-
erosclerosis and CVD in four U.S. communities: Washington
County, Maryland; Forsyth County, North Carolina; selected sub-
urbs of Minneapolis, Minnesota; and Jackson, Mississippi (ARIC
Investigators 1989). Participants were selected as a community-
stratified probability sample of 15,792 mostly African- and
European-American men and women 45–64 years of age and par-
ticipated in a baseline exam (Visit 1; 1987–1989) at which fasting
blood and other demographic, socioeconomic, behavioral, and
medical information was collected by trained and certified staff.

The present study also included participant data from up to three
triennial follow-up visits 3, 6, and 9 y after enrollment (Visits 2–
4, 1990–1998) during which fasting blood was redrawn.

Leukocyte composition analyses were conducted in five WHI
and ARIC subpopulations with available DNAm data (see Table
S1). The three WHI subpopulations included a) Ancillary Study
315 (WHI-EMPC; n=2,200) (Whitsel 2018), b) Broad Agency
Announcement 23 (WHI-BAA23; n=1,988) (Assimes et al.
2018), and c) Ancillary Study 311 (WHI-AS311; n=860) (Bhatti
2018). WHI-EMPC, also known as Epigenetic Mechanisms of
PM-Mediated CVD Risk, is a study of epigenetic mechanisms
underlying associations between PM and CVD within randomly
selected WHI CT participants at the screening visit, Annual Visit
3, or Annual Visit 6. WHI-BAA23, also known as Integrative
Genomics and Risk of CHD and Related Phenotypes in the
Women’s Health Initiative, is a case–control study of coronary
heart disease. By design, WHI-BAA23 oversampled African
Americans and Hispanic/Latino Americans and required all par-
ticipants to have undergone genome-wide genotyping and profil-
ing of seven CVD biomarkers. DNAm was measured in blood
collected at the screening visit, before the incidence of coronary
heart disease. WHI-AS311, also known as the Bladder Cancer
and Leukocyte Methylation study, is a nested case–control study
of bladder cancer. Bladder cancer cases were matched to controls
based on enrollment year, age at enrollment, follow-up time, and
DNAm extraction method. DNAm was measured in blood col-
lected at the screening visit, before the incidence of bladder can-
cer. The two ARIC subpopulations included 2,796 African
Americans from Forsyth County or Jackson (ARIC-AA) with
DNA and 1,139 European Americans from Forsyth County,
Minneapolis, or Washington County (ARIC-EA) with cerebral
magnetic resonance imaging data (Mosley et al. 2005) all at
Visits 2 (1990–1992) or 3 (1993–1995) (see Figure S1).

Leukocyte Counts and Composition
Leukocyte counts were measured among WHI CT participants at
the screening visit, among OS participants at the screening visit
and Annual Visit 3, and among ARIC participants at Visits 1–2 on
automated cell counters at local laboratories following standard
quality assurance procedures (Papp et al. 1989). Leukocyte counts
were remeasured among ARIC participants inWashington County
at Visits 3–4 and in Forsyth County at Visit 4. Table 1 displays the
number of included participants with leukocyte count data, by
study and visit. Established associations between leukocyte count,
demographic, and clinical variables in WHI and ARIC have been
reported by others (Margolis et al. 2005; Nieto et al. 1992).

Leukocyte composition [i.e., the proportions of CD8+ T
cells, CD4+ T cells, natural killer (NK) cells, B cells, mono-
cytes, and granulocytes] were validly estimated (Houseman et al.
2012) among a subset of WHI and ARIC participants with
DNAm data using methods that leverage differentially methyl-
ated regions [i.e., stably methylated CpG sites within, but varia-
bly methylated CpG sites among leukocyte cell types (Houseman
et al. 2012; Koestler et al. 2013)]. Table S2 displays the number
of included participants with leukocyte composition data, by
subpopulation.

Particulate Matter Exposure Estimation
The study focused on PM2:5, PM10, and (coarse) PM2:5–10, the first
two of which are regulated under the Clean Air Act by the U.S.
Environmental Protection Agency (EPA) (U.S. EPA 2017). PM
exposures were based on either daily or monthly estimation meth-
ods. Daily mean concentrations (in micrograms per cubic meter) of
PM10 were spatially estimated at all geocoded participant addresses
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(Whitsel et al. 2004, 2006) using U.S. EPA Air Quality System
(AQS) data and national-scale, log-normal ordinary kriging (Liao
et al. 2006, 2007). For each participant, daily mean concentrations
of PM10 were averaged over 2 and 7 d prior to and including the day
of the study visit.

Geocoded participant address-specific monthly mean concen-
trations (in micrograms per cubic meter) of PM10 and PM2:5 were
spatiotemporally estimated using generalized additive mixedmod-
els and geographic information system–based predictors. Because
U.S. EPA AQS monitoring data for PM2:5 were not widely avail-
able until 1999, spatiotemporal estimation also involved the log-
transformed ratio of PM2:5 to predicted PM10 between 1987 and
1999 (Yanosky et al. 2014). Monthly mean concentrations were
averaged over the 12 months prior to and including examination
months to obtain annual means. PM2:5–10 concentrations for 1- and
12-month means were defined as the monthly differences between
PM10 and PM2:5 concentrations.

Covariates
Demographic, socioeconomic, behavioral, and medical covariates
included study center, visit, self-identified race/ethnicity, age (in
years), individual-level education (high school education or
lower, more than high school), neighborhood socioeconomic sta-
tus (Diez Roux et al. 2001), smoking status (current, former,
never), alcohol use (current, former, never), measured body mass
index (BMI; in kilograms per squared meters), total energy ex-
penditure [metabolic equivalent of task (MET)-hours/week],
mean temperature (in degrees Celsius), mean dew point (in
degrees Celsius), mean barometric pressure (in kilopascals), sea-
son (using sine/cosine functions) (Stolwijk et al. 1999), and to
control for longer-term temporal trends, an interval-scale variable
for calendar date. Race/ethnicity and individual-level education
were self-reported at baseline. Smoking status, alcohol use, BMI,
and total energy expenditure were evaluated at each study visit,
the latter based on the type, frequency, and duration of recrea-
tional physical activity (Manson et al. 2002). When physical ac-
tivity information was unavailable, it was defined as the value
given at the last visit or the weighted mean between visits if data
were available. Geocoded participant address-specific neighbor-
hood socioeconomic status was a sum of Z-transformed U.S.
Census tract-level measures of median household income; per-
cent of households with interest dividends or rent income; percent
of population at least 25 years of age with a high school degree;
percent of population at least 16 years of age with professional,
managerial, or executive occupations; and median value of
owner-occupied housing units (Diez Roux et al. 2001). Geocoded
participant address-specific daily mean temperature, dew point,
and barometric pressure were averaged across all National
Climatic Data Center monitoring stations within 50 km (NCDC
2019), then averaged over 2, 7, 28, and 365 d prior to and includ-
ing the day of the study visit.

Subpopulation-specific covariates included sex (in ARIC),
randomly assigned treatment group (in WHI), case–control status
(in WHI-AS311 and WHI-BAA23), and other sampling-related
variables in WHI-AS311 (i.e., enrollment year, age at enrollment,
follow-up time, DNAm extraction method).

Exclusions
Of all observations inWHI and ARIC (n=285,548), small percen-
tages were excluded because theyweremade on participants in one
WHI center outside of the contiguous 48 states (2%), on study visit
dates for which PM was not estimable (2%), among participants
with a study-specific leukocyte count>99:5th percentile (leukocy-
tosis, 0.5%), study-specific leukocyte count<0:5th percentile

(leukopenia, 0.5%), or conditions associated with abnormal leuko-
cyte traits such as hematological malignancy (1.7%) or oral/paren-
teral use of a granulocyte/macrophage colony stimulating factor
(<0:01%), lithium (0.2%), glucocorticosteroid (1.1%), or antibiotic
use (2.6%).

Multiple Imputation
To avoid potential for selection bias in complete-data analyses
when data are missing at random (Hernán et al. 2004), multivari-
ate imputation by chained equations (MICE) (Azur et al. 2011;
Stuart et al. 2009) was used to impute missing data (percentage
missing range: 0.6–9.1%). Binary and categorical data were
imputed using logistic regression, and continuous variables were
imputed using predictive means matching.

Attrition Weights
To address the potential for bias due to nonrandom attrition over
time in leukocyte count analyses in WHI and ARIC, stabilized
inverse probability weights for each participant were calculated
at each examination using logistic regression, where the numera-
tor was the marginal probability of the participant not being lost
to follow-up at an examination and the denominator was the
probability of the participant not being lost to follow-up at an ex-
amination conditional on their covariate patterns at prior exami-
nation (Howe et al. 2016).

Statistical Analysis: Leukocyte Count
Study- and center-stratified, PM–leukocyte count associations
were estimated using an attrition-weighted and covariate-adjusted,
two-level, linear, mixed-effects, longitudinal model including a
random intercept for examination at the participant level. The
model was given by

LCij =b0 + b1PMij + b2Zij + bP0j + eEij , [1]

where i and j denote the ith examination (level 1) of the jth participant
(level 2); LC is the leukocyte count; b0 is the intercept;PM is the 2- or
7-d mean of PM10 or the 1- or 12-month mean of PM2:5, PM10, or
PM2:5–10; and Z is a vector of covariates. The term ðbP0 Þ∼Nð0,GÞ is a
random intercept for examination at the participant level to account
for within-participant variation, and eE ∼ ð0,r2Þ is the random error
at the examination level. Study- and center-specific measures of
association (b1) and their 95% confidence intervals (CIs) were esti-
mated as b1 ± 1:96× the standard error ðSEÞ per 10-lg=m3 increase
in PM, forest plotted, and pooled in random-effects meta-analyses
(DerSimonian andLaird 1986) after testing homogeneity of associa-
tions among strata (pCochran’sQ <0:10) (Cochran 1954).

Statistical Analysis: Leukocyte Composition
Subpopulation-stratified, cross-sectional, PM–leukocyte propor-
tion associations were analyzed using multivariate methods for
compositional data (Aitchison 1982; Egozcue et al. 2003), that is,
a set of positive, mutually exclusive components (such as propor-
tions, p) that represent parts constituting a whole, are multicollin-
ear, and collectively sum to 1 within a constrained space called
a simplex. Proportions were isometrically log-ratio (ilr)-trans-
formed from the simplex to real (Euclidean geometric) space.
Transformation—which allowed for the dependent variation
(Chastin et al. 2015; Egozcue et al. 2003) and relative positioning
of components in the simplex (Chastin et al. 2015; Fairclough
et al. 2017)—resulted in p-1 orthogonal (i.e., non-multicollinear)
coordinates. It also allowed for back-transformation of multivari-
ate results into component proportions (Pawlowsky-Glahn et al.
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2015). Back-transformation was based on compositional data
analysis models, as given by

ilrðLPÞ= b0 + b1PM+ b3Z + e, [2]

where ilrðLPÞ denotes the ilr-transformed estimated leukocyte
proportions; b0 is the intercept; PM is the 2- or 7-d mean of PM10
or the 1- or 12-month mean of PM2:5, PM10, or PM2:5–10; Z is a
vector of covariates; and e∼ ð0,r2Þ is the random error term. The
vector of association measures (b1) denotes the five orthogonal
coordinates, the back-transformation of which represents the cor-
responding difference in each of the six leukocyte proportions per
10-lg=m3 increase in PM. Because the SEs of b1 cannot be back-
transformed, the SEs of back-transformed leukocyte proportion
associations were estimated using 1,000 bootstrap samples.
Subpopulation-specific measures of association were reported as
absolute percentage differences (%), forest plotted, and pooled in
random effects meta-analyses (DerSimonian and Laird 1986) after
testing homogeneity of associations among strata (pCochran’sQ <0:10)
(Cochran 1954).

Statistical Analysis: Sensitivity
In leukocyte count analyses, Model 1 adjusted for self-identified
race/ethnicity, age, sex (in ARIC), randomly assigned treatment
group (in WHI), visit, mean temperature, mean dew point, mean
barometric pressure, season (to control for within-year variation),
and a restricted cubic natural spline function of calendar date

(Bhaskaran et al. 2013; Dominici et al. 2002; Peng et al. 2006) with
one knot per year to control for secular trends in PM and leukocyte
count methods. Model 2 also adjusted for potential socioeconomic
confounders (individual-level education and neighborhood socioe-
conomic status). Model 3 additionally adjusted for behavioral vari-
ables that explain variation in leukocyte traits or account for
residual confounding (smoking status, alcohol use, BMI, and phys-
ical activity). The sensitivity of Model 3 results to the use of two
knots per calendar year, one knot for every two calendar years, and
no calendar date adjustment was assessed. Although leukocyte
composition analyses also adjusted for subpopulation-specific
covariates, the models did not adjust for calendar date because leu-
kocyte proportions were estimated using the same methods across
subpopulations. In addition, leukocyte composition models were
not center-stratified due to small sample sizes and instead were
adjusted for U.S. Census region (Midwest, Northeast, South, and
West). Sensitivity of leukocyte count associations to PM estima-
tion method was examined by substituting spatially estimated 28-
and 365-d mean concentrations of PM10 for spatiotemporally esti-
mated 1- and 12-month mean concentrations of PM10. Sensitivity
of significant PM-estimated leukocyte composition associations
were assessed in a subset of ARIC participants with available
measured leukocyte composition data (lymphocyte, monocyte,
and granulocyte proportions). Additional sensitivity of PM–leuko-
cyte composition associations were evaluated by estimating PM
associations with the log-transformed ratio of CD4+ to CD8+ T-
cell proportions (CD4:CD8)—a marker of immune function and

Figure 1.Map of geocoded Women’s Health Initiative (1993–2002) and Atherosclerosis Risk in Communities (1986–1998) study participants and centers at
baseline. WHI centers (n=39) followed 1,238–3,690 participants. ARIC centers followed 3,588–3,943 participants. WHI and ARIC centers were co-located in
Minneapolis, MN, and Winston-Salem, NC.
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possible biomarker for coronary heart disease (Neupane et al. 2019).
PM–CD4:CD8 associations were reported as percentage changes.

Results
Of the 150,328 WHI participants and 15,347 ARIC participants
with leukocyte count data (total n=165,675; Figure 1), 96% and
94% had baseline data after exclusions. At baseline, participants
were 62.3 years of age on average and mostly female (96%),
white (84%), more than high school educated (74%), never/for-
mer smokers (91%), and current alcohol users (70%). Mean BMI,
physical activity, and leukocyte count were 28:0 kg=m2, 12.3
MET-hours/week, and 5,908 cells=lL (Table 1). Participants in
the WHI and ARIC subpopulations with leukocyte composition
data (n=8,457; Table S2) were more likely to be younger (mean
age: 61.5 y) and male (16%) and less likely to be white (45%),
more than high school educated (52%), never/former smokers
(85%), and current alcohol users (52%) than those with leukocyte
count data. Among these subpopulations, mean estimated leuko-
cyte cell type percentages were 9% (CD8+ T cells), 18% (CD4+

T cells), 7% (natural killer cells), 7% (B cells), 10% (monocytes),
and 49% (granulocytes).

Mean PM10 concentrations in the populations with leukocyte
count and composition data were below U.S. EPA National
AmbientAir Quality Standards (NAAQS) in place during the study
period (24-h PM10 ≤ 150lg=m3; annual PM10 ≤ 50lg=m3) (U.S.
EPA 2017). However, 1- and 12-month mean PM2:5 concentra-
tions in ARIC approached or exceeded the annual standard in place
during the study period (≤15lg=m3) (Table 2; Table S3). PM10
and PM2:5 concentrations were higher, whereas PM2:5–10 concen-
trations were lower among subpopulations with leukocyte compo-
sition data.

In Models 1–3, short-term mean PM10 concentrations were
inversely associated with leukocyte count when pooled across
study- and center-specific strata. For example, in Model 3, there
were 7 (95% CI: −13, −1) and 11 (−20, −2) cells=lL lower leu-
kocyte counts per 10-lg=m3 increase in 2- and 7-d mean PM10
concentration (Table 3; Figure 2).

In Model 1, longer-term mean PM10, PM2:5, and PM2:5–10
concentrations were positively, but imprecisely, associated with

Table 2.Mean± standard deviation ðSDÞ Particulate matter concentrations among n=165,675 participants with leukocyte count data before imputation,
Women’s Health Initiative (1993–2002) and Atherosclerosis Risk in Communities (1986–1998) study.

PM (lg=m3)

WHI screening visit
and ARIC visit 1

n=159,162

WHI ARIC WHI and ARIC

Screening visit
n=144,744

Annual visit 3a

n=77,096
Visit 1

n=14,418
Visit 2

n=13,000
Visit 3b

n=3,100
Visit 4c

n=5,433

Percentage imputed
of 285,548

observations (%)

PM10
2-d 29:5± 11:9 28:4± 11:1 28:4± 11:2 39:8± 14:1 35:4± 12:3 31:9± 11:9 28:2± 10:1 5.5
7-d 28:7± 9:3 27:6± 8:3 27:6± 8:6 39:2± 10:3 34:4± 8:5 30:9± 8:1 27:4± 7:4 5.5
1-month 20:9± 6:7 20:6± 6:6 20:6± 6:6 25:2± 7:1 22:0± 5:7 24:3± 6:5 21:2± 5:4 7.0
12-month 20:9± 5:1 20:8± 5:1 20:7± 5:0 24:4± 4:4 22:6± 3:8 23:4± 2:6 21:1± 2:1 8.9
PM2:5
1-month 12:2± 4:3 12:0± 4:1 12:0± 4:2 15:2± 5:2 13:6± 4:2 15:2± 4:2 15:2± 4:0 7.0
12-month 12:1± 3:0 12:0± 3:0 12:0± 2:9 14:7± 3:6 13:8± 3:2 14:9± 1:4 14:8± 1:3 8.9
PM2:5–10
1-month 8:7± 4:7 8:6± 4:8 8:6± 4:8 10:0± 3:4 8:4± 2:7 9:0± 3:0 6:0± 2:5 7.0
12-month 8:7± 3:9 8:7± 4:0 8:7± 4:0 9:7± 2:1 8:8± 1:7 8:5± 1:5 6:2± 1:7 8.9

Note: ARIC, Atherosclerosis Risk in Communities; CI, confidence interval; PM, particulate matter; PM10, PM≤ 10 lm in diameter; PM2:5, PM≤ 2:5 lm in diameter; PM2:5–10,
PM>2:5 and <10 lm in diameter; WHI, Women’s Health Initiative.
aWHI Observational Study participants only.
bParticipants from Washington County only.
cParticipants from Forsyth County (46%) or Washington County (54%).

Table 3. Pooled difference in leukocyte count (D; cells=lL) per 10-lg=m3 increase in PM concentrations among n=165,675 participants, Women’s Health
Initiative (1993–2002) and Atherosclerosis Risk in Communities (1986–1998) study.

PM exposure

Model 1a Model 2b Model 3c

D (95% CI) cells=lL pCochran’sQ
d D (95% CI) cells=lL pCochran’sQ

d D (95% CI) cells=lL pCochran’sQ
d

PM10 (lg=m3)
2-d mean −6 (−12, 0) 0.89 −7 (−12, −1) 0.90 −7 (−13, −1) 0.91
7-d mean −10 (−19, −1) 0.49 −10 (−20, −1) 0.53 −11 (−20, −2) 0.42
1-month mean 22 ( 3, 41) 2.5 × 10–3 8 (−8, 25) 0.08 −2 (−18, 14) 0.08
12-month mean 65 (26, 103) 6.5 × 10–4 32 (4, 59) 0.37 8 (−17, 33) 0.56
PM2:5 (lg=m3)
1-month mean 33 (9, 56) 0.21 21 (0, 43) 0.51 12 (−9, 33) 0.45
12-month mean 114 (65, 163) 0.59 64 (15, 114) 0.99 28 (−20, 75) 0.99
PM2:5–10 (lg=m3)
1-month mean 18 (−8, 44) 0.01 −1 (−24, 21) 0.13 −13 (−36, 9) 0.12
12-month mean 67 (8, 127) 6.5 × 10–6 18 (−30, 66) 0.04 −5 (−47, 36) 0.15

Note: ARIC, Atherosclerosis Risk in Communities; CI, confidence interval; PM, particulate matter; PM10, PM≤ 10 lm in diameter; PM2:5, PM≤ 2:5 lm in diameter; PM2:5–10,
PM>2:5 and <10 lm in diameter; WHI, Women’s Health Initiative.
aModel 1 adjusted for race/ethnicity, age, sex (in ARIC), randomly assigned treatment group (in WHI), mean temperature, mean dew point, mean barometric pressure, season, and a re-
stricted cubic natural spline function of calendar time with one knot per calendar year.
bModel 2 adjusted for all covariates in Model 1 and additionally for individual-level education and neighborhood socioeconomic status.
cModel 3 adjusted for all covariates in Model 2 and additionally for smoking status, alcohol use, body mass index, and physical activity.
dHomogeneity of associations among strata was tested using Cochran’sQ-test statistic, where a pCochran’sQ <0:10 suggests there is evidence to reject the null hypothesis of homogeneity.
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the leukocyte count (i.e., they had wide CIs). However, the
associations also were attenuated by additional adjustment for
potential socioeconomic confounders (Model 2) and behavioral
variables (Model 3). For example, there were 114 (65, 163), 64
(15, 114), and 28 (−20, 75) cells=lL higher leukocyte counts
per 10-lg=m3 increase in the 12-month mean PM2:5 concentra-
tion in Models 1–3 (Table 3; Figure S2). In sensitivity analyses,
estimates were generally robust to variation in the method of
controlling for calendar date (see Figure S3). Leukocyte count
associations with 28- and 365-d mean PM10 concentrations also
were imprecise and no different from the null associations (see
Table S4), as those between leukocyte count and 1- and 12-
month mean PM10.

Across PM size fractions and averaging durations, PM–leukocyte
compositional associations in Model 3 (Table 4) differed little from
those inModels 1 and 2 (see Tables S5–S6). Higher 7-d mean PM10
concentrationswere associatedwith somewhat higher CD8+ T-cell
proportions, whereas 1- and 12-month mean PM10 concentrations
were associated with somewhat lower CD8+ T-cell proportions
(Table 4; Figure S4). One- and 12-month mean concentrations of
PM2:5 were associated with lower CD8+ T-cell, NK cell, and B-
cell proportions and higher granulocyte proportions. For example,
there was a 1.1% (−1:9%, −0:3%) lower CD8+ T-cell proportion
and 1.2% (0.6%, 1.8%) higher granulocyte proportion per 10-lg=m3

increase in 1-month mean PM2:5 (Figure 3). In contrast, there were
0.6% (−1:3%, 0.1%) and 1.2% (−2:4%, 0.1%) lower granulocyte
proportions per 1- and 12-month mean PM2:5− 10 (see Figure S4).
PM2:5 associations with estimated granulocyte proportions were
consistent in magnitude and direction with those in the analyses of
measured granulocyte proportions (see Table S7). PM–CD4:CD8
associations were generally inconsistent, with suggestively
inverse associations with short-duration PM10 and suggestively
positive associations with longer duration PM10 and PM2:5; how-
ever, CIs were wide and included the null (Table S8).

Discussion
Results from this study suggest that mid- to longer-duration expo-
sures to PM2:5 concentrations below U.S. EPA NAAQS may be
associated with a higher leukocyte count, higher granulocyte pro-
portion, and lower CD8+ T-cell proportion among multi-ethnic
and geographically diverse populations of U.S. women andmen.

Although leukocyte count associations were also observed
with 1- and 12-month mean PM10 and PM2:5–10 concentrations,
adjusting for potential socioeconomic confounders attenuated
them. Indeed, lower socioeconomic status has been related both
to increases in CVD risk (Elo 2009) and higher concentrations of
ambient PM (Hajat et al. 2015). Further attenuation was observed
with additional adjustment for behavioral variables (smoking,
alcohol use, BMI, and physical activity) suggesting that they may
account for residual confounding by socioeconomic or other
unmeasured characteristics. Taken together with prior evidence
suggesting positive (Chen and Schwartz 2008) and null (Viehmann
et al. 2015) associations between longer-duration PM10 with leuko-
cyte counts, the present resultswere unable to clarify the relationship.
Nevertheless, positive—yet imprecise—leukocyte count estimates
remained for PM2:5, supporting evidence first reported in the Heinz
Nixdorf Recall study (Viehmann et al. 2015). Moreover, the magni-
tudes of estimates presently observed are on par with those previ-
ously associated with a 1-cigarette/d increase in smoking (Hansen
et al. 1990; Petitti andKipp 1986; Schwartz andWeiss 1991).

PM2:5 concentrationswere also associated with leukocyte com-
position; particularly, with higher granulocyte and lower CD8+

T-cell proportions. This observation is consistent with results from
the Social Environment and Biomarkers of Aging Study (SEBAS)
in Taiwan that found positive associations between long-duration
PM2:5 exposure and the proportion of neutrophils, the most abun-
dant type of granulocyte (Chuang et al. 2011). SEBAS also detected
similar associations with long-duration PM10 concentrations, but

Figure 2. Pooled difference in leukocyte count (D; cells=lL) per 10-lg=m3 increase in PM concentrations among n=165,675 participants, Women’s Health
Initiative (1993–2002) and Atherosclerosis Risk in Communities (1986–1998) study. Model 1 adjusted for race/ethnicity, age, sex (in ARIC), randomly
assigned treatment group (in WHI), mean temperature, mean dew point, mean barometric pressure, season, and a restricted cubic natural spline function of cal-
endar date with one knot per year. Model 2 adjusted for all covariates in Model 1 plus individual-level education and neighborhood socioeconomic status.
Model 3 adjusted for all covariates in Model 2 plus smoking status, alcohol use, body mass index, and physical activity.
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they were not observed in the present study. Results are also consist-
ent with small-scale occupational studies that found higher neutro-
phil (Riediker et al. 2004) and lower lymphocyte/CD8+ T-cell
proportions (Riediker et al. 2004; Zhao et al. 2013) albeit with short-
duration exposure to PM2:5, which was further demonstrated in rats
(Gerlofs-Nijland et al. 2005; Gordon et al. 1998; Kodavanti et al.
2002). Indeed, observed lower CD8+ T-cell proportions may be
related to PM-responsive migration of CD8+ lymphocytes from
the blood to bronchial tissues (Salvi et al. 1999), contraction of the
CD8+ regulatory (suppressor) T-cell pool, and/or latter phase
homeostatic contraction of the CD8+ cytotoxic T-cell pool (Huang
et al. 1999).

Persistent systemic inflammation due to longer-duration PM
exposure is a biologically plausible mechanism linking PM with
adverse health. Indeed, systemic inflammation has been impli-
cated in endothelial injury, atherosclerotic disease progression,
and subsequent increases in CVD risk (Ross 1999). In the epide-
miologic context, systemic inflammation, as measured by leuko-
cyte count, has been consistently and independently associated
with CVD and mortality in WHI (Kabat et al. 2017; Margolis
et al. 2005), in ARIC (Lee et al. 2001), and in other populations
(Brown et al. 2001; Danesh et al. 1998; Ruggiero et al. 2007).

The results presented herein support the hypothesis that chronic
exposure to PM contributes to systemic inflammation and may
partly explain the established connection between PM and CVD
risk (Chi et al. 2016a;Miller et al. 2007). They support prior studies
that mechanistically linked atherosclerosis and the inflammatory
responses to PM (Adar et al. 2013; Brook and Rajagopalan 2010;
Diez Roux et al. 2008; Künzli et al. 2005; Perez et al. 2015). Such
studies observed higher pro-inflammatory cytokines following in-
halation and deposition of PM in the lungs (Pope et al. 2016; Tan
et al. 2000; Terashima et al. 1997a, 1997b; van Eeden et al. 2001)
and the activation of coagulation and adhesion molecules
(Baccarelli et al. 2007; Bind et al. 2012; O’Neill et al. 2007; Pope
et al. 2016; Rückerl et al. 2006; Tsai et al. 2012), which could ulti-
mately lead to increased leukocyte content within and vulnerability
to rupture of atherosclerotic plaques (Brook and Rajagopalan
2010;Madjid et al. 2004; Ross 1999).

Although the inverse relationship between short-duration (i.e.,
2- and 7-d mean) ambient PM10 exposures and leukocyte counts
may be at odds with this suggestion, PM exposure may initiate pul-
monary alveolar microvascular sequestration of monocytes and
granulocytes (Goto et al. 2004; Terashima et al. 1999; Yatera et al.
2008), thereby reducing their concentrations in peripheral blood
over the short term (Ghio et al. 2003; Yatera et al. 2008). Animal
studies of monocytes and acute PM10 exposure also suggest that
atherosclerotic plaques may recruit leukocytes from the circulation
(Yatera et al. 2008). The inverse PM10–leukocyte count associa-
tions with short-duration exposure in the present study are in con-
trast to null (Liao et al. 2005; Seaton et al. 1999) and positive
(Schwartz 2001; Steinvil et al. 2008) epidemiologic associations
observed in other contexts. However, they are consistent with
observed inverse associations with short-duration exposure to
PM2:5 in the Normative Aging Study (Zeka et al. 2006).

The characterization of PM–leukocyte associations in the com-
positional context is particularly relevant given the increasing avail-
ability of epigenomic biomarkers that are based on DNA extracted
from peripheral blood with leukocyte proportions that can vary
widely among participants. However, leukocyte cell types possess
distinguishing patterns of DNAm, so measurements of methylation
are driven in part by leukocyte composition (Jaffe and Irizarry
2014). Common practice is therefore to restrict measurement of
DNAm to a single cell type (Chi et al. 2016b), to statistically adjust
associations with DNAm for leukocyte proportions determined via
cytometry as part of a complete blood count/differential, or in itsT
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absence, to adjust for DNAm-based estimates of CD8+ T-cell,
CD4+ T-cell, NK cell, B-cell, monocyte, and granulocyte propor-
tions (Houseman et al. 2012; Panni et al. 2016).Mindful of the PM–
leukocyte compositional associations detected herein, causal dia-
grams (Greenland et al. 1999) may benefit from thoughtful consid-
eration of their potential effects on causal association and mediation
analyses (VanderWeele 2015; VanderWeele and Vansteelandt
2014) involving DNAm and other leukocyte-derived biomarkers.
Indeed, leukocyte composition may itself be a mediator of PM–
DNAm associations. As such, DNAm associations with PM2:5—
without control for leukocyte composition—may reflect mecha-
nisms that involve inflammation, epigenetics, or both.

The present results are nevertheless limited by the variances of
the observed association estimates. The analyses were weighted
for attrition to avoid potential selection bias due to nonrandom loss
to follow-up; however, the loss of bias came at the cost of precision
(Cole andHernán 2008). Furthermore, precision was influenced by
technical, temporal, and biological variation of leukocyte count
measurements. Participant blood samples were collected, proc-
essed, and analyzed by local laboratories across the United States
using different automated hematology cell counters. Indeed, secu-
lar trends in methods of determining leukocyte count (Ruggiero
et al. 2007) may have affected the precision or accuracy of associa-
tion estimates. And while lack of adjustment for other cell (e.g.,
erythrocyte, platelet) counts capable of explaining some variation
in leukocyte counts may have contributed to the precision of esti-
mates observed herein, there also is evidence to suggest high
within-laboratory reliability of leukocyte counts (Nieto et al. 1992)
and robustness of study- and center-stratified, longitudinal model
results to multiple methods of calendar date adjustment.Moreover,
erythrocyte and platelet counts—plausible intermediates of PM–
leukocyte count associations—were neither uniformly available
nor necessarily appropriate candidates for statistical adjustment
(Schisterman et al. 2009).

Additional limitations include error in estimated leukocyte pro-
portions and PM concentrations. Although cytometrically deter-
mined leukocyte proportions for the cell types of interest were not
available herein at participant visits with corresponding PM data,

estimation of the CD8+ T-cell, CD4+ T-cell, NK cell, B-cell,
monocyte, and granulocyte proportions at hand was associated
with a low root mean square error (median rMSE: 8.2%, range:
5.4–11.6%) (Houseman et al. 2012; Koestler et al. 2013).
Furthermore, the validity of spatially estimated daily PM10 esti-
mates was demonstrated with an average prediction error and
standardized prediction error near zero, a rootmean square standar-
dized near one, and a root mean square prediction error near the SE
(Liao et al. 2006, 2007). Similarly, models for spatiotemporally
estimated monthly mean PM10 and PM2:5 estimation performed
well, with high squared Pearson correlations between excluded
monthly observations and model predictions (R2 = 0:68–0:77) in a
5- to 10-fold, out-of-sample cross-validation (Yanosky et al.
2014). Therefore, outcome and exposure measurement error were
less likely to have biased observed associations.

Limitations aside, this longitudinal study observed that 1- and
12-month mean ambient PM2:5 concentrations were associated
with higher leukocyte count. It is the first to do so in large, multi-
ethnic and geographically diverse populations of women and
men from two well-characterized cardiovascular disease cohorts.
Furthermore, this study is the first to use compositional data anal-
ysis methods to estimate associations between ambient PM2:5
concentrations and leukocyte composition. Its analyses accounted
for known relationships among proportions, thereby avoiding
methodological biases inherent in conventional analyses that
erroneously assume compositional data are independent. Results
from them are therefore relatively well positioned to inform
future causal analyses using leukocyte-derived biomarkers.

In conclusion, findings suggest that mid- to longer-duration
ambient exposure to fine particulate matter (PM2:5) air pollution
may induce subclinical, but epidemiologically important, inflam-
matory responses among racially, ethnically, and environmentally
diverse U.S. populations in U.S. EPA Regions 1–10.
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