19 research outputs found

    Reconstruction of the longitudinal phase portrait for the SC CW heavy ion HELIAC at GSI

    No full text
    At the GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany, the HElmholtz LInear ACcelerator (HELIAC) is currently under construction. The HELIAC comprises superconducting multigap Crossbar H-mode (SC CH) cavities. The input beam is delivered by an already existing High Charge Injector (HLI). For the further development of the accelerator a detailed knowledge of the input beam parameters to the SC section is necessary. A method for beam reconstruction is incorporated, which provides for longitudinal beam characteristics using measurements with a beam shape monitor and a particle simulation code. This finalizes the investigations on 6D beam parameters, following previous measurements in transversal phase space. The reconstruction of the longitudinal phase portrait is presented

    Further RF measurements on the superconducting 217 MHz CH demonstrator cavity for a CW linac at GSI

    No full text
    Recently, the first section of the superconducting (sc) continuous wave (cw) Linac has been extensively tested with heavy ion beam from the GSI High Charge State Injector (HLI). During this testing phase, the reliable operability of 217 MHz multi gap crossbar-H-mode (CH) cavities has been successfully demonstrated. The sc 217 MHz CH cavity (CH⁰) of the demonstrator setup accelerated heavy ions up to the design beam energy and even beyond at high beam intensities and full transmission. This worldwide first beam test with a sc CH cavity is a major milestone on the way realizing the entire sc cw Linac project. In this contribution further RF measurements on the cavity are presented providing full characterization of the RF structure

    An Alternating Phase Focusing injector for heavy ion acceleration

    No full text
    The new heavy ion superconducting continuous wave HElmholtz LInear ACcelerator (HELIAC) is under construction at GSI. A normal conducting injector, comprising an ECR ion source, an RFQ and a DTL, is recently in development. The new Interdigital H-mode DTL, presented in this paper, accelerates the heavy ion beam from 300 to 1400 keV/u, applying an Alternating Phase Focusing (APF) beam dynamics scheme. This APF section, consisting of two separately controlled tanks, has to provide for stable routine operation with assistance of dedicated beam diagnostics devices in the Intertank section. The installed quadrupole lenses and beam steerers installed there ensure full transmission in a wide range of input beam parameters

    Beam Commissioning of the Demonstrator Setup for the Superconducting Continuous Wave HIM/GSI-Linac

    No full text
    During successful beam commissioning of the superconducting 15-gap Crossbar H-mode cavity at GSI Helmholtzzentrum für Schwerionenforschung heavy ions up to the design beam energy have been accelerated. The design acceleration gain of 3.5 MeV inside a length of less than 70 cm has been reached with full transmission for heavy ion beams of up to 1.5 particle mueA. The measured beam parameters confirm sufficient beam quality. The machine beam commissioning is a major milestone of the R for the superconducting heavy ion continuous wave linear accelerator HELIAC of Helmholtz Institute Mainz (HIM) and GSI developed in collaboration with IAP Goethe-University Frankfurt. The next step is the procurement and commissioning of so called ’Advanced Demonstrator’ - the first of series cryo module for the entire accelerator HELIAC. Results of further Demonstrator beam tests, as well as the status of the Advanced demonstrator project will be reported
    corecore