1,556 research outputs found

    An assessment of warm fog: Nucleation, control, and recommended research

    Get PDF
    A state-of-the-art survey is given of warm fog research which has been performed up to, and including, 1974. Topics covered are nucleation, growth, coalescence, fog structures and visibility, effects of surface films, drop size spectrum, optical properties, instrumentation, liquid water content, condensation nuclei. Included is a summary of all reported fog modification experiments. Additional data is provided on air flow, turbulence, a summary of recommendations on instruments to be developed for determining turbulence, air flow, etc., as well as recommendations of various fog research tasks which should be performed for a better understanding of fog microphysics

    Visual style: Qualitative and context-dependent categorization

    Full text link
    Style is an ordering principle by which to structure artifacts in a design domain. The application of a visual order entails some explicit grouping property that is both cognitively plausible and contextually dependent. Central to cognitive-contextual notions are the type of representation used in analysis and the flexibility to allow semantic interpretation. We present a model of visual style based on the concept of similarity as a qualitative context-dependent categorization. The two core components of the model are semantic feature extraction and self-organizing maps (SOMs). The model proposes a method of categorizing two-dimensional unannotated design diagrams using both low-level geometric and high-level semantic features that are automatically derived from the pictorial content of the design. The operation of the initial model, called Q-SOM, is then extended to include relevance feedback (Q-SOM:RF). The extended model can be seen as a series of sequential processing stages, in which qualitative encoding and feature extraction are followed by iterative recategorization. Categorization is achieved using an unsupervised SOM, and contextual dependencies are integrated via cluster relevance determined by the observer's feedback. The following stages are presented: initial per feature detection and extraction, selection of feature sets corresponding to different spatial ontologies, unsupervised categorization of design diagrams based on appropriate feature subsets, and integration of design context via relevance feedback. From our experiments we compare different outcomes from consecutive stages of the model. The results show that the model provides a cognitively plausible and context-dependent method for characterizing visual style in design. Copyright © 2006 Cambridge University Press

    From Soft Walls to Infrared Branes

    Full text link
    Five dimensional warped spaces with soft walls are generalizations of the standard Randall-Sundrum compactifications, where instead of an infrared brane one has a curvature singularity (with vanishing warp factor) at finite proper distance in the bulk. We project the physics near the singularity onto a hypersurface located a small distance away from it in the bulk. This results in a completely equivalent description of the soft wall in terms of an effective infrared brane, hiding any singular point. We perform explicitly this calculation for two classes of soft wall backgrounds used in the literature. The procedure has several advantages. It separates in a clean way the physics of the soft wall from the physics of the five dimensional bulk, facilitating a more direct comparison with standard two-brane warped compactifications. Moreover, consistent soft walls show a sort of universal behavior near the singularity which is reflected in the effective brane Lagrangian. Thirdly, for many purposes, a good approximation is obtained by assuming the bulk background away from the singularity to be the usual Randall-Sundrum metric, thus making the soft wall backgrounds better analytically tractable. We check the validity of this procedure by calculating the spectrum of bulk fields and comparing it to the exact result, finding very good agreement.Comment: 14 pages, 2 figures, v2: subsection on IR brane potentials and appendix on fermions added, version to appear in PR

    Scalable Online Conformance Checking Using Incremental Prefix-Alignment Computation

    Full text link
    Conformance checking techniques aim to collate observed process behavior with normative/modeled process models. The majority of existing approaches focuses on completed process executions, i.e., offline conformance checking. Recently, novel approaches have been designed to monitor ongoing processes, i.e., online conformance checking. Such techniques detect deviations of an ongoing process execution from a normative process model at the moment they occur. Thereby, countermeasures can be taken immediately to prevent a process deviation from causing further, undesired consequences. Most online approaches only allow to detect approximations of deviations. This causes the problem of falsely detected deviations, i.e., detected deviations that are actually no deviations. We have, therefore, recently introduced a novel approach to compute exact conformance checking results in an online environment. In this paper, we focus on the practical application and present a scalable, distributed implementation of the proposed online conformance checking approach. Moreover, we present two extensions to said approach to reduce its computational effort and its practical applicability. We evaluate our implementation using data sets capturing the execution of real processes

    Overcoming cross-scale challenges to climate change adaptation for local government: A focus on Australia

    Full text link
    This paper aims to identify key cross-scale challenges to planned adaptation within the context of local government in Australia, and suggest enabling actions to overcome such challenges. Many of the impacts of climate change and variability have or will be experienced at the local level. Local governments are embedded in a larger governance context that has the potential to limit the effectiveness of planned adaptation initiatives on the ground. This study argues that research on constraints and barriers to adaptation must place greater attention to understanding the broader multi-governance system and cross-scale constraints that shape adaptation at the local government scale. The study identified seven key enabling actions for overcoming cross-scale challenges faced by local governments in Australia when undertaking climate change adaptation planning and implementation. A central conclusion of this study is that a cooperative and collaborative approach is needed where joint recognition of the scale of the issue and its inherent cross-scale complexities are realised. Many of the barriers or constraints to adaptation planning are interlinked, requiring a whole government approach to adaptation planning. The research suggests a stronger role at the state and national level is required for adaptation to be facilitated and supported at the local level. © 2013 Springer Science+Business Media Dordrecht
    • …
    corecore