898 research outputs found
Relative abundance and size composition of subtidal abalone, Haliotis spp., sea urchin, Strongylocentrotus spp., and abundance of sea stars off Fitzgerald marine reserve, September 1993
Data were collected at twenty-six dive stations at seven discrete latitudes along Fitzgerald Marine Reserve (FMR). Dive stations were targeted at three stratified depth zones: shallow (6.1 m), medium (10.7 m), and deep (16.8 m) in six of the seven locations. Two types of line
transects, emergent and invasive, were completed by separate dive teams at each dive station. The area surveyed totalled 1,510 m2 for emergent and 560 m2 for invasive transects.
Reef habitat dominated all depth zones, with moveable boulder and cobble increasing at medium and shallow depths. Encrusting coraline and surface algae dominated (49%), followed by turf (37%), sub-canopy (11.2%), and rare canopy (0.2%). Canopy was found only at shallow depths. Turf and sub-canopy decreased with depth.
Only two species of abalone, red, Haliotis rufescens, and flat, H. walallensis, were found. Flat abalone were extremely rare with only two found on invasive transects (0.004 abalone m-2). Red abalone densities were low at both emergent (0.02 abalone m-2, s.e.=O.Ol) and
invasive (0.07 abalone m-2, s.e.=0.03 ) transects. Red abalone concentrations differed significantly by depth and location. No abalone were found at deep depths and only one
sport-legal (178 mm shell length) abalone was found at medium depth. One commercial legal (198 mm shell length) abalone was found on the entire survey. Most sport-legal abalone were located in cryptic habitat in shallow invasive transects (38%), compared to 7% on emergent transects. The only evidence of recruitment was found on invasive transects where three young-of-the-year (<=31 mm shell length) red abalone were found. Evidence from our survey and other sources suggests that sport and commercial fisheries are not sustainable off the San Mateo coast.
Red urchin, Stongylocentrotus franciscanus, were more abundant than purple urchin, S. purpuratus, or red abalone. Red urchin densities were lower in emergent (1.08 urchin m-2,s.e.=0.04) than invasive (1.52, s.e.=0.06 m-2) transects. Densities of red urchin at deep stations in areas of lower algal abundance and potentially greater commercial fishing pressure were about one-half the densities at medium and shallow depths. ANOVA showed significant differences by depth and location. Mean Test Diameter (MTD) increased from deep to medium to shallow depths, while juvenile (<=50 mm) MTD showed an inverse
relationship with depth. Shallow-depth invasive transects revealed a missing mode of 83 mm red urchin. This size mode was not found in emergent transects, probably due to cryptic habitat.
Purple urchin were found at low densities at all three depth strata. Purple urchin densities were comparable in emergent (0.11 urchin m-2, s.e.=0.02 ) and invasive (0.09 urchin m-2,s.e.=0.03) transects. ANOVA showed densities varied significantly by location but not depth. 'Juvenile' purple urchin abundance showed an inverse relation to juvenile red urchin, increasing from deep to shallow depths. Purple urchin MTD of 84 mm (s.d.=23) was larger
than reported for intertidal areas off FMR.
Sea stars were found in high abundance off FMR. Bat stars, Asterina minata, had the highest densities (0.79 sea stars m-2, s.e.=0.03) followed by Pisaster sp. (0.47 sea stars m-2,s.e.=0.03 ), and sunflower stars, Pycnopodia helianthoides, (0.11 sea stars m-2, s.e.=0.04).
Pisaster sp. was the only group of sea stars where differences in density were significant by depth or location. (30pp.
Ferromagnetic quantum critical fluctuations in YbRh_2(Si_{0.95}Ge_{0.05})_2
The bulk magnetic susceptibility of
YbRh(SiGe) has been investigated %by ac-and
dc-magnetometry at low temperatures and close to the field-induced quantum
critical point at T. For T a Curie-Weiss law with a
negative Weiss temperature is observed at temperatures below 0.3 K. Outside
this region, the susceptibility indicates ferromagnetic quantum critical
fluctuations: above 0.3 K, while at low temperatures
the Pauli susceptibility follows and scales with
the coefficient of the term in the electrical resistivity. The
Sommerfeld-Wilson ratio is highly enhanced and increases up to 30 close to the
critical field.Comment: Physical Review Letters, to be publishe
Anisotropic electron spin resonance of YbIr2Si2
A series of electron spin resonance (ESR) experiments were performed on a
single crystal of the heavy fermion metal YbIr2Si2 to map out the anisotropy of
the ESR-intensity I_ESR which is governed by the microwave field component of
the g-factor. The temperature dependencies of I_ESR(T) and g(T) were measured
for different orientations and compared within the range 2.6K \le T \le 16K.
The analysis of the intensity dependence on the crystal orientation with
respect to both the direction of the microwave field and the static magnetic
field revealed remarkable features: The intensity variation with respect to the
direction of the microwave field was found to be one order of magnitude smaller
than expected from the g-factor anisotropy. Furthermore, we observed a weak
basal plane anisotropy of the ESR parameters which we interpret to be an
intrinsic sample property.Comment: 10 pages, 5 figure
Electron Spin Resonance of the Yb 4f moment in Yb(Rh1-xCox)2Si2
[published in Phys. Rev. B 85, 035119 (2012)] The evolution of spin dynamics
from the quantum critical system YbRh2Si2 to the stable trivalent Yb system
YbCo2Si2 was investigated by Electron Spin Resonance (ESR) spectroscopy. While
the Kondo temperature changes by one order of magnitude, all compositions of
the single crystalline series Yb(Rh1-xCox)2Si2 show well defined ESR spectra
with a clear Yb3+ character for temperatures below \approx 20 K. With
increasing Co-content the ESR g-factor along the c-direction strongly increases
indicating a continuous change of the ground state wave function and, thus, a
continuous change of the crystal electric field. The linewidth presents a
complex dependence on the Co-content and is discussed in terms of the Co-doping
dependence of the Kondo interaction, the magnetic anisotropy and the influence
of ferromagnetic correlations between the 4f states. The results provide
evidence that, for low Co-doping, the Kondo interaction allows narrow ESR
spectra despite the presence of a large magnetic anisotropy, whereas at high
Co-concentrations, the linewidth is controlled by ferromagnetic correlations. A
pronounced broadening due to critical correlations at low temperatures is only
observed at the highest Co-content. This might be related to the presence of
incommensurate magnetic fluctuations.Comment: 8 pages, 8 Figure
Remarkable magnetostructural coupling around the magnetic transition in CeCoFeSi
We report a detailed study of the magnetic properties of
CeCoFeSi under high magnetic fields (up to 16 Tesla)
measuring different physical properties such as specific heat, magnetization,
electrical resistivity, thermal expansion and magnetostriction.
CeCoFeSi becomes antiferromagnetic at 6.7 K.
However, a broad tail (onset at 13 K) in the specific heat
precedes that second order transition. This tail is also observed in the
temperature derivative of the resistivity. However, it is particularly
noticeable in the thermal expansion coefficient where it takes the form of a
large bump centered at . A high magnetic field practically washes out that
tail in the resistivity. But surprisingly, the bump in the thermal expansion
becomes a well pronounced peak fully split from the magnetic transition at
. Concurrently, the magnetoresistance also switches from negative to
positive just below . The magnetostriction is considerable and
irreversible at low temperature (
410 at 2 K) when the magnetic interactions dominate. A broad
jump in the field dependence of the magnetostriction observed at low may be
the signature of a weak ongoing metamagnetic transition. Taking altogether, the
results indicate the importance of the lattice effects in the development of
the magnetic order in these alloys.Comment: 5 pages, 6 figure
Magnetic Transition in the Kondo Lattice System CeRhSn2
Our resistivity, magnetoresistance, magnetization and specific heat data
provide unambiguous evidence that CeRhSn2 is a Kondo lattice system which
undergoes magnetic transition below 4 K.Comment: 3 pages text and 5 figure
Field-induced suppression of the heavy-fermion state in YbRh_2Si_2
We report DC magnetization measurements on YbRh_2Si_2 at temperatures down to
0.04K, magnetic fields B<11.5T and under hydrostatic pressure P<1.3GPa. At
ambient pressure a kink at B*=9.9T indicates a new type of field-induced
transition from an itinerant to a localized 4f-state. This transition is
different from the metamagnetic transition observed in other heavy fermion
compounds, as here ferromagnetic rather than antiferromagnetic correlations
dominate below B*. Hydrostatic pressure experiments reveal a clear
correspondence of B* to the characteristic spin fluctuation temperature
determined from specific heat
Temperature- and Magnetic-Field-Dependent Optical Properties of Heavy Quasiparticles in YbIr2Si2
We report the temperature- and magnetic-field-dependent optical conductivity
spectra of the heavy electron metal YbIrSi. Upon cooling below the
Kondo temperature (), we observed a typical charge dynamics that is
expected for a formation of a coherent heavy quasiparticle state. We obtained a
good fitting of the Drude weight of the heavy quasiparticles by applying a
modified Drude formula with a photon energy dependence of the quasiparticle
scattering rate that shows a similar power-law behavior as the temperature
dependence of the electrical resistivity. By applying a magnetic field of 6T
below , we found a weakening of the effective dynamical mass
enhancement by about 12% in agreement with the expected decrease of the
-conduction electron hybridization on magnetic field.Comment: 5 pages, 4 figures. to be published in Journal of the Physical
Society of Japan Vol. 79 (2010) No. 1
- …