378 research outputs found
New aspects in nucleon-nucleus collisions and EAS properties around 10(6) GeV
At energies higher than 2 x 10 to the 5 GeV, very little information exists on detailed properties of nucleon-nucleon collision; the rare elements are coming from jets, and, as nondirect improvements from gamma-ray families. The results exhibit some conflicting features, or, at least, very large fluctuations like copious production of gamma-rays in opposition to Centauro-like events, sometimes suggest that phase transition to quark gluon plasma occurs in nucleus-nucleus collisions and even in nucleon-nucleus collision. The multicluster phenomenological model (MPM) extrapolated for extensive air showers EAS simulation up to 5 x 10 to the 6 GeV to put in evidence some significant deviation between experimental data and prediction
Topological aspects of age parameter
The well known NKG function is a very useful tool to describe the lateral extension of the electromagnetic component in Extensive Air Showers (EAS); however, in spite of non-negligible qualities (simplicity, normalization by beta function), it doesn't correspond exactly to the natural shape of the lateral electron distribution. Several bias may occur in size estimation if NKG is used without correction. It is shown that the longitudinal age parameter s sub t can be correlated with the information obtained from the lateral electron densities according to the conditions of use of the NKG function
The primary cosmic ray mass composition at energies above 10(14) eV
It is shown in this paper that the experimental data on extensive air showers at the energy interval 10 to the 15th power - 10 to the 17th power eV seems to be described best if it is assumed that the Galactic cosmic rays are described by some sort of a two component picture. The first component is of a mixed composition similar to that at lower energies and the second is dominated by protons. Overall spectrum starts to be enriched in protons at energies about 10 to the 15th power eV bu the effective mass of the primaries remains constant up to energies around 10 to the 16th power eV. That results from the fact that composition gradually changes from multi-component to mixture of protons and heavies. That picture receives also some sort of support from recent observations of relatively high number of nergetic protons in JACEE and Concorde experiments
Search for ultra high energy gamma-rays from various sources
The hypothesis that there exists an excess of showers from the Galactic plane on the level 1 to 2% at energies just above 10 to the 16th power eV is explored. The excess shower from the Galactic plane seems to be very similar in properties to excess showers from the point sources/flat spectrum, deficit of low energy muons. Those facts suggest that the excess from the Galactic plane are probably due to summing up of the contribution from individual point sources. That in turn suggest that those sources are rather numerous
Detailed studies of the electron lateral distribution in extensive air showers with energies around 10(16) eV
Detailed studies have been performed of the electron lateral distribution in extensive air showers using the Lodz extensive air shower array. The showers were grouped according to their particle densities around 20 m from the core. The grouping was made in very narrow intervals of the densities. For every group of showers and for every distance interval /changing by 5 m/ histograms of the numbers of electron counters discharged have been obtained. The trays of G.M counters were located at following distances from the center of the triggering detectors array: 16 m, 76 m, 117 m, 137 m, 141 m and 147 m
Educational studies of cosmic rays with telescope of Geiger-Muller counters
A group of high school students (XII Liceum) in the framework of the Roland
Maze Project has built a compact telescope of three Geiger-Muller counters. The
connection between the telescope and PC computer was also created and programed
by students involved in the Project. This has allowed students to use their
equipment to perform serious scientific measurements concerning the single
cosmic ray muon flux at ground level and below. These measurements were then
analyzed with the programs based on the 'nowadays' knowledge on statistics. An
overview of the apparatus, methods and results were presented at several
students conferences and recently won the first prize in a national competition
of high school students scientific work. The telescope itself, in spite of its
'scientific' purposes, is built in such a way that it is hung on a wall in a
school physics lab and counts muons continuously. This can help to raise the
interest for studying physics among others. At present a few (3) groups of
young participants of the Roland Maze Project have already built their own
telescopes for their schools and some others are working on it. This work is a
perfect example of what can be done by young people when respective
opportunities are created by more experienced researchers and a little help and
advice is given.Comment: 5 figures, 10 page
Lateral distribution functions for giant air showers
We have compared the lateral analytical structure functions coming from cascade theory to the numerical distributions generated by EAS Monte Carlo simulations and to the empirical functions used in giant air showers experiments.
Introducing the Gaussian hypergeometric formalism, we have improved the analytical description in the most common topological situations and we propose a new function characterized by both terms fitted separately to the electron-positron and the muon components. Important effects in the accuracy of the core position determination
are underlined and consequences for the primary energy estimation are discussed. The consecutive treatment and interpretation of the data contained in the catalogues of Volcano Ranch and Yakutsk, completed by the most energetic event of AGASA, are presented. Results might have important implications for detector configuration of the future giant air shower arrays
The neutron 'thunder' accompanying the extensive air shower
Simulations show that neutrons are the most abundant component among
extensive air shower hadrons. However, multiple neutrons which appear with long
delays in neutron monitors nearby the EAS core ('neutron thunder') are mostly
not the neutrons of the shower, but have a secondary origin. The bulk of them
is produced by high energy EAS hadrons hitting the monitors. The delays are due
to the termalization and diffusion of neutrons in the moderator and reflector
of the monitor accompanied by the production of secondary gamma-quanta. This
conclusion raises the important problem of the interaction of EAS with the
ground, the stuff of the detectors and their environment since they have often
hydrogen containing materials like polyethilene in neutron monitors. Such
interaction can give an additional contribution to the signal in the EAS
detectors. It can be particularly important for the signals from scintillator
or water tank detectors at km-long distances from the EAS core where neutrons
of the shower become the dominant component after a few mcsec behind the EAS
front.Comment: 12 pages, 4 figures, accepted by J.Phys.G: Nucl.Part.Phy
High energy hadrons in EAS at mountain altitude
An extensive simulation has been carried out to estimate the physical
interpretation of dynamical factors such as , in terms of high
energy interaction features, concentrated in the present analysis on the
average transverse momentum. It appears that the large enhancement observed for
versus primary energy, suggesting in earliest analysis a significant
rise of with energy, is only the result of the limited resolution of the
detectors and remains in agreement with a wide range of models used in
simulations.Comment: 13 pages, 6 PostScript figures, LaTeX Subm. to JPhys
- …