708 research outputs found

    Strategic vs Non-Strategic Motivations of Sanctioning

    Get PDF
    We isolate strategic and non-strategic motivations of sanctioning in a repeated public goods game. In two experimental treatments, subjects play the public goods game with the possibility to sanction others. In the STANDARD sanctions treatment, each subject learns about the sanctions received in the same round as they were assigned, but in the SECRET sanctions treatment, sanctions are announced only after the experiment is finished, removing in this way all strategic reasons to punish. We find that sanctioning is similar in both treatments, giving support for nonstrategic explanations of sanctions (altruistic punishment). Interestingly, contributions to the public good in both treatments with sanctioning are higher than when the public goods game is played without any sanctioning, irrespective of announcing the sanctions to their receivers during the play of the game, or only after the game is finished. The mere knowledge that sanctions might be assigned increases cooperation: subjects correctly expect that nonstrategic sanctioning takes place against freeriders.altruistic punishment;nonstrategic sanctions;strategic sanctions;public goods;economic experiment

    Fluctuations for the Ginzburg-Landau ϕ\nabla \phi Interface Model on a Bounded Domain

    Full text link
    We study the massless field on Dn=D1nZ2D_n = D \cap \tfrac{1}{n} \Z^2, where DR2D \subseteq \R^2 is a bounded domain with smooth boundary, with Hamiltonian \CH(h) = \sum_{x \sim y} \CV(h(x) - h(y)). The interaction \CV is assumed to be symmetric and uniformly convex. This is a general model for a (2+1)(2+1)-dimensional effective interface where hh represents the height. We take our boundary conditions to be a continuous perturbation of a macroscopic tilt: h(x)=nxu+f(x)h(x) = n x \cdot u + f(x) for xDnx \in \partial D_n, uR2u \in \R^2, and f ⁣:R2Rf \colon \R^2 \to \R continuous. We prove that the fluctuations of linear functionals of h(x)h(x) about the tilt converge in the limit to a Gaussian free field on DD, the standard Gaussian with respect to the weighted Dirichlet inner product (f,g)β=Diβiifiigi(f,g)_\nabla^\beta = \int_D \sum_i \beta_i \partial_i f_i \partial_i g_i for some explicit β=β(u)\beta = \beta(u). In a subsequent article, we will employ the tools developed here to resolve a conjecture of Sheffield that the zero contour lines of hh are asymptotically described by SLE(4)SLE(4), a conformally invariant random curve.Comment: 58 page

    Monopole Excitation to Cluster States

    Get PDF
    We discuss strength of monopole excitation of the ground state to cluster states in light nuclei. We clarify that the monopole excitation to cluster states is in general strong as to be comparable with the single particle strength and shares an appreciable portion of the sum rule value in spite of large difference of the structure between the cluster state and the shell-model-like ground state. We argue that the essential reasons of the large strength are twofold. One is the fact that the clustering degree of freedom is possessed even by simple shell model wave functions. The detailed feature of this fact is described by the so-called Bayman-Bohr theorem which tells us that SU(3) shell model wave function is equivalent to cluster model wave function. The other is the ground state correlation induced by the activation of the cluster degrees of freedom described by the Bayman-Bohr theorem. We demonstrate, by deriving analytical expressions of monopole matrix elements, that the order of magnitude of the monopole strength is governed by the first reason, while the second reason plays a sufficient role in reproducing the data up to the factor of magnitude of the monopole strength. Our explanation is made by analysing three examples which are the monopole excitations to the 02+0^+_2 and 03+0^+_3 states in 16^{16}O and the one to the 02+0^+_2 state in 12^{12}C. The present results imply that the measurement of strong monopole transitions or excitations is in general very useful for the study of cluster states.Comment: 11 pages, 1 figure: revised versio

    Magnetic and metallographical studies of the Bocaiuva iron meteorite

    Get PDF
    The Bocaiuva iron meteorite (IAB) has been studied magnetically and metallographically in order to understand its stable natural remanent magnetization (NRM). This meteorite consists of a large amount of 6-7wt% Ni kamacite, associated with taenite, plessite, schreibersite and magnetite. Tetrataenite less than 0.2% in volume occurs along the high-Ni taenite lamellae and in the kamacite domain walls beside its lamellae. The NRM direction is almost parallel to a dominant plane of tetrataenite development. The Bocaiuva may have acquired the NRM in the slow cooling process under 300℃ of the meteorite\u27s parent body or after shock heating by collisions

    Open Problems in α\alpha Particle Condensation

    Full text link
    α\alpha particle condensation is a novel state in nuclear systems. We briefly review the present status on the study of α\alpha particle condensation and address the open problems in this research field: α\alpha particle condensation in heavier systems other than the Hoyle state, linear chain and α\alpha particle rings, Hoyle-analogue states with extra neutrons, α\alpha particle condensation related to astrophysics, etc.Comment: 12 pages. To be published in J. of Phys. G special issue on Open Problems in Nuclear Structure (OPeNST

    Nuclear Alpha-Particle Condensates

    Full text link
    The α\alpha-particle condensate in nuclei is a novel state described by a product state of α\alpha's, all with their c.o.m. in the lowest 0S orbit. We demonstrate that a typical α\alpha-particle condensate is the Hoyle state (Ex=7.65E_{x}=7.65 MeV, 02+0^+_2 state in 12^{12}C), which plays a crucial role for the synthesis of 12^{12}C in the universe. The influence of antisymmentrization in the Hoyle state on the bosonic character of the α\alpha particle is discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle state, therefore, are predominant. It is conjectured that α\alpha-particle condensate states also exist in heavier nαn\alpha nuclei, like 16^{16}O, 20^{20}Ne, etc. For instance the 06+0^+_6 state of 16^{16}O at Ex=15.1E_{x}=15.1 MeV is identified from a theoretical analysis as being a strong candidate of a 4α4\alpha condensate. The calculated small width (34 keV) of 06+0^+_6, consistent with data, lends credit to the existence of heavier Hoyle-analogue states. In non-self-conjugated nuclei such as 11^{11}B and 13^{13}C, we discuss candidates for the product states of clusters, composed of α\alpha's, triton's, and neutrons etc. The relationship of α\alpha-particle condensation in finite nuclei to quartetting in symmetric nuclear matter is investigated with the help of an in-medium modified four-nucleon equation. A nonlinear order parameter equation for quartet condensation is derived and solved for α\alpha particle condensation in infinite nuclear matter. The strong qualitative difference with the pairing case is pointed out.Comment: 71 pages, 41 figures, review article, to be published in "Cluster in Nuclei (Lecture Notes in Physics) - Vol.2 -", ed. by C. Beck, (Springer-Verlag, Berlin, 2011

    Concepts of alpha-particle condensation

    Full text link
    Certain aspects of the recently proposed antisymmetrised alpha particle product state wave function, or THSR alpha cluster wave function, for the description of the ground state in 8Be, the Hoyle state in 12C, and analogous states in heavier nuclei, are elaborated in detail. For instance, the influence of antisymmetrisation in the Hoyle state on the bosonic character of the alpha particles is studied carefully. It is shown to be weak, so that bosonic aspects are predominant. The de Broglie wave length of alpha particles in the Hoyle state is shown to be much larger than the inter-alpha distance. It is pointed out that the bosonic features of low density alpha gas states have measurable consequences, one of which, that is enhanced multi-alpha decay properties, likely already have been detected. Consistent with experiment, the width of the proposed analogue to the Hoyle state in 16O at the excitation energy of E_x=15.1 MeV is estimated to be very small (34 keV), lending credit to the existence of heavier Hoyle-like states. The intrinsic single boson density matrix of a self-bound Bose system can, under physically desirable boundary conditions, be defined unambiguously. One eigenvalue then separates out, being close to the number of alpha's in the system. Differences between Brink and THSR alpha cluster wave functions are worked out. No cluster model of the Brink type can describe the Hoyle state with a single configuration. On the contrary, many superpositions of the Brink type are necessary, implying delocalisation towards an alpha product state. It is shown that single alpha particle orbits in condensates of different nuclei are almost the same. It is thus argued that alpha particle antisymmetrised product states of the THSR type are a very promising novel and useful concept in nuclear physics.Comment: 16 pages, 14 figures, to appear in PR

    Phase coexistence of gradient Gibbs states

    Full text link
    We consider the (scalar) gradient fields η=(ηb)\eta=(\eta_b)--with bb denoting the nearest-neighbor edges in Z2\Z^2--that are distributed according to the Gibbs measure proportional to \texte^{-\beta H(\eta)}\nu(\textd\eta). Here H=bV(ηb)H=\sum_bV(\eta_b) is the Hamiltonian, VV is a symmetric potential, β>0\beta>0 is the inverse temperature, and ν\nu is the Lebesgue measure on the linear space defined by imposing the loop condition ηb1+ηb2=ηb3+ηb4\eta_{b_1}+\eta_{b_2}=\eta_{b_3}+\eta_{b_4} for each plaquette (b1,b2,b3,b4)(b_1,b_2,b_3,b_4) in Z2\Z^2. For convex VV, Funaki and Spohn have shown that ergodic infinite-volume Gibbs measures are characterized by their tilt. We describe a mechanism by which the gradient Gibbs measures with non-convex VV undergo a structural, order-disorder phase transition at some intermediate value of inverse temperature β\beta. At the transition point, there are at least two distinct gradient measures with zero tilt, i.e., Eηb=0E \eta_b=0.Comment: 3 figs, PTRF style files include
    corecore