663 research outputs found

    Phase transition in Pr0.5Ca0.5CoO3 and related cobaltites

    Full text link
    We present an extensive investigation (magnetic, electric and thermal measurements and X-ray absorption spectroscopy) of the Pr0.5Ca0.5CoO3 and (Pr1-yYy)0.7Ca0.3CoO3 (y=0.0625-0.15) perovskites, in which a peculiar metal-insulator (M-I) transition, accompanied with pronounced structural and magnetic anomalies, occurs at 76 K and 40-132 K, respectively. The inspection of the M-I transition using the XANES data of Pr L3-edge and Co K-edge proofs the presence of Pr4+ ions at low temperatures and indicates simultaneously the intermediate spin to low spin crossover of Co species on lowering the temperature. The study thus definitively confirms the synchronicity of the electron transfer between Pr3+ ions and Co^(3+/4+)O3 subsystem and the transition to the low-spin, less electrically conducting phase. The large extent of the transfer is evidenced by the good quantitative agreement of the determined amount of the Pr4+ species, obtained either from the temperature dependence of the XANES spectra or via integration of the magnetic entropy change over the Pr4+ related Schottky peak in the low-temperature specific heat. These results show that the average valence of Pr3+/Pr4+ ions increases (in concomitance with the decrease of the formal Co valence) below TMI for (Pr0.925Y0.075)0.7Ca0.3CoO3 up to 3.16+ (the doping level of the CoO3 subsystem decreases from 3.30+ to 3.20+), for (Pr0.85Y0.15)0.7Ca0.3CoO3 up to 3.28+ (the decrease of doping level from 3.30+ to 3.13+) and for Pr0.5Ca0.5CoO3 up to 3.46+ (the decrease of doping level from 3.50+ to 3.27+).Comment: 19 pages, 11 figure

    Physical Properties, Star Formation, and Active Galactic Nucleus Activity in Balmer Break Galaxies at 0 < z < 1

    Full text link
    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-AGN diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to MIR Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx) and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, 2 (5%) composite galaxies and 3 (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, 3 AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. Furthermore, the relationship between SFR surface density (\Sigma_{SFR}) and stellar mass surface density per time unit (\Sigma_{M_{\ast}/\tau}) as a function of redshift was investigated using the [OII] \lambda3727, 3729, H\alpha \lambda6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and SSFR versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder galaxies and for a given color the SSFR is larger for higher redshift galaxies.Comment: preprint version, 36 pages, 17 figures, 3 tables, accepted for publication in the Astrophysical Journa

    Metal-insulator transition and the Pr3+^{3+}/Pr4+^{4+} valence shift in (Pr1−y_{1-y}Yy_{y})0.7_{0.7}Ca0.3_{0.3}CoO3_3

    Full text link
    The magnetic, electric and thermal properties of the (Ln1−yLn_{1-y}Yy_{y})0.7_{0.7}Ca0.3_{0.3}CoO3_3 perovskites (LnLn~=~Pr, Nd) were investigated down to very low temperatures. The main attention was given to a peculiar metal-insulator transition, which is observed in the praseodymium based samples with y=0.075y=0.075 and 0.15 at TM−I=64T_{M-I}=64 and 132~K, respectively. The study suggests that the transition, reported originally in Pr0.5_{0.5}Ca0.5_{0.5}CoO3_3, is not due to a mere change of cobalt ions from the intermediate- to the low-spin states, but is associated also with a significant electron transfer between Pr3+^{3+} and Co3+^{3+}/Co4+^{4+} sites, so that the praseodymium ions occur below TM−IT_{M-I} in a mixed Pr3+^{3+}/Pr4+^{4+} valence. The presence of Pr4+^{4+} ions in the insulating phase of the yttrium doped samples (Pr1−y_{1-y}Yy_{y})0.7_{0.7}Ca0.3_{0.3}CoO3_3 is evidenced by Schottky peak originating in Zeeman splitting of the ground state Kramers doublet. The peak is absent in pure Pr0.7_{0.7}Ca0.3_{0.3}CoO3_3 in which metallic phase, based solely on non-Kramers Pr3+^{3+} ions, is retained down to the lowest temperature.Comment: 10 figure

    Perivascular and Diffuse Lymphocytic Inflammation are not Specific for Failed Metal-on-metal Hip Implants

    Get PDF
    Several studies suggest that histologic findings from tissues obtained at revision arthroplasty for failed metal-on-metal (MOM) total hip implants may reflect an immune reaction to particles or ions in some patients. However, only a limited number of cases without MOM implants were reported as controls in those studies. The purpose of this study is to better define the extent and distribution of morphologic features attributed to an immune reaction in tissues sampled at revision surgery for failed nonMOM THA. As part of a multicenter, prospective study, we reviewed 612 capsular and interface tissues obtained from 130 patients at revision THA. The samples were selected from periacetabular regions (154 samples from 103 patients), femoral implant/cement-bone interface (154 samples from 79 patients), and from areas of the joint capsule that had an intraoperative gross appearance suggesting the possibility of either infection or metallosis (256 samples from 129 patients). All patients had more than one sample obtained. The extent and distribution of lymphocytes and plasma cells, acute inflammation, and visible particles of debris were graded using criteria similar to those described to grade inflammation around failed MOM implants. We identified perivascular lymphocytes in 111 biopsy samples taken from 65 (50%) of 130 patients, and in 87 specimens from 57 (53%) of 107 patients thought to have aseptic loosening. Diffusely distributed lymphocytes were identified in 86 (66%) of 130 patients, and in 66 (62%) of the 107 hips with aseptic loosening, although few had the highest grade of inflammation. Increasing extent of diffuse and perivascular lymphocytes correlated with increasing extent of metal particles. Mild lymphocytic inflammation, diffuse and especially perivascular, is common in tissues around failed nonMOM implants. Although extensive inflammation in an inflammatory pseudotumor pattern is rare, it does occur in some cases of failed metal-polyethylene hip arthroplasties. The importance of inflammation is unknown, but the extent of diffuse inflammation shows a positive correlation with metal debris, so it could reflect a reaction to particles or ions in some patients

    Topological magnetic structures of MnGe: a neutron diffraction and symmetry analysis study

    Full text link
    From new neutron powder diffraction experiments on the chiral cubic (P213P2{_1}3) magnet manganese germanide MnGe, we analyse all of the possible crystal symmetry-allowed magnetic superstructures that are determined successfully from the data. The incommensurate propagation vectors kk of the magnetic structure are found to be aligned with the [100] cubic axes, and correspond to a magnetic periodicity of about 30 AËš\r{A} at 1.8 K. Several maximal crystallographic symmetry magnetic structures are found to fit the data equally well and are presented. These include topologically non-trivial magnetic hedgehog and "skyrmion" structures in multi-kk cubic 3+3 and orthorhombic 3+2 dimensional magnetic superspace groups respectively, with either potentially responsible for topological Hall effect [1]. The presence of microstrain-like peak broadening caused by the transition to the magnetically ordered state would seem to favour a "skyrmion"-like magnetic structure, though this does not rule out the cubic magnetic hedgehog structure. We also report on a new combined mechanochemical and solid-state chemical route to synthesise MnGe at ambient pressures and moderate temperatures, and compare with samples obtained by the traditional high pressure synthesis
    • …
    corecore