56 research outputs found
Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique
Phase variance-based motion contrast imaging is demonstrated using a spectral domain optical coherence tomography system for the in vivo human retina. This contrast technique spatially identifies locations of motion within the retina primarily associated with vasculature. Histogram-based noise analysis of the motion contrast images was used to reduce the motion noise created by transverse eye motion. En face summation images created from the 3D motion contrast data are presented with segmentation of selected retinal layers to provide non-invasive vascular visualization comparable to currently used invasive angiographic imaging. This motion contrast technique has demonstrated the ability to visualize resolution-limited vasculature independent of vessel orientation and flow velocity
Imaging vasculature independent of direction of flow using spectral domain optical coherence tomography
A variation to the analysis of phase data achieved with spectral domain optical coherence tomography (SDOCT) is presented. By using the variance of the phase changes observed in the OCT images, scatterer motion has been imaged which is not readily observable with conventional Doppler OCT techniques. Dynamic motion contrast has been demonstrated for imaging Brownian motion of a sample system as well as imaging vasculature of in vivo 3dpf zebrafish
Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent
The use of indocyanine green (ICG), a U.S. Food and Drug Administration approved dye, in a pump-probe scheme for molecular contrast optical coherence tomography (MCOCT) is proposed and demonstrated for the first time. In the proposed pump-probe scheme, an optical coherence tomography (OCT) scan of the sample containing ICG is first acquired. High fluence illumination (∼190kJ/cm^2) is then used to permanently photobleach the ICG molecules—resulting in a permanent alteration of the overall absorption of the ICG. A second OCT scan is next acquired. The difference of the two OCT scans is used to determine the depth resolved distribution of ICG within a sample. To characterize the extent of photobleaching in different ICG solutions, we determine the cumulative probability of photobleaching, ϕ_(B,cum), defined as the ratio of the total photobleached ICG molecules to the total photons absorbed by the ground state molecules. An empirical study of ICG photobleaching dynamics shows that ϕ_(B,cum) decreases with fluence as well as with increasing dye concentration. The quantity ϕ_(B,cum) is useful for estimating the extent of photobleaching in an ICG sample (MCOCT contrast) for a given fluence of the pump illumination. The paper also demonstrates ICG-based MCOCT imaging in tissue phantoms as well as within stage 54 Xenopus laevis
Imaging vasculature independent of direction of flow using spectral domain optical coherence tomography
A variation to the analysis of phase data achieved with spectral domain optical coherence tomography (SDOCT) is presented. By using the variance of the phase changes observed in the OCT images, scatterer motion has been imaged which is not readily observable with conventional Doppler OCT techniques. Dynamic motion contrast has been demonstrated for imaging Brownian motion of a sample system as well as imaging vasculature of in vivo 3dpf zebrafish
Visualization of human retinal micro-capillaries with phase contrast high-speed optical coherence tomography
We present high-speed Fourier-domain optical coherence tomography (Fd-OCT) with the phase variance based motion contrast method for visualizing retinal micro-circulation in vivo. This technique allows non-invasive visualization of a two-dimensional retinal perfusion map and concurrent volumetric morphology of retinal microvasculature with high sensitivity. The high-speed acquisition rate at 125kHz A-scans enables reduction of motion artifacts with increased scanning area if compared to previously reported results. Several scanning schemes with different sampling densities and scanning areas are evaluated to find optimal parameters for in vivo imaging. In order to evaluate this technique, we compare OCT micro-capillary imaging using the phase variance technique with fundus fluorescein angiography (FA). Additionally, volumetric visualization of blood flow for a normal subject is presented
Optical imaging of the chorioretinal vasculature in the living human eye
Detailed visualization of microvascular changes in the human retina is clinically limited by the capabilities of angiography imaging, a 2D fundus photograph that requires an intravenous injection of fluorescent dye. Whereas current angiography methods enable visualization of some retinal capillary detail, they do not adequately reveal the choriocapillaris or other microvascular features beneath the retina. We have developed a noninvasive microvascular imaging technique called phase-variance optical coherence tomography (pvOCT), which identifies vasculature three dimensionally through analysis of data acquired with OCT systems. The pvOCT imaging method is not only capable of generating capillary perfusion maps for the retina, but it can also use the 3D capabilities to segment the data in depth to isolate vasculature in different layers of the retina and choroid. This paper demonstrates some of the capabilities of pvOCT imaging of the anterior layers of choroidal vasculature of a healthy normal eye as well as of eyes with geographic atrophy (GA) secondary to age-related macular degeneration. The pvOCT data presented permit digital segmentation to produce 2D depth-resolved images of the retinal vasculature, the choriocapillaris, and the vessels in Sattler’s and Haller’s layers. Comparisons are presented between en face projections of pvOCT data within the superficial choroid and clinical angiography images for regions of GA. Abnormalities and vascular dropout observed within the choriocapillaris for pvOCT are compared with regional GA progression. The capability of pvOCT imaging of the microvasculature of the choriocapillaris and the anterior choroidal vasculature has the potential to become a unique tool to evaluate therapies and understand the underlying mechanisms of age-related macular degeneration progression
Visualization of human retinal capillary networks: a comparison of intensity, speckle-variance and phase-variance optical coherence tomography
We evaluate methods to visualize human retinal micro-circulation in vivo by standard intensity-based optical coherence tomography (OCT), speckle-variance optical coherence tomography (svOCT), and phase-variance optical coherence tomography (pvOCT). En face projection views created from the same volumetric data set of the human retina using all three data processing methods are created and compared. Additionally we used support vector machine (SVM) based semi-automatic segmentation to generate en face projection views of individual retinal layers. The layers include: first, the whole inner retina (from the nerve fiber layer to the outer nuclear layer), and second, from the ganglion cell layer to the outer nuclear layer. Finally, we compare the retinal vasculature images processed from the three OCT techniques and fluorescein angiography (FA)
Visualization of human retinal micro-capillaries with phase contrast high-speed optical coherence tomography
We present high-speed Fourier-domain optical coherence tomography (Fd-OCT) with the phase variance based motion contrast method for visualizing retinal micro-circulation in vivo. This technique allows non-invasive visualization of a two-dimensional retinal perfusion map and concurrent volumetric morphology of retinal microvasculature with high sensitivity. The high-speed acquisition rate at 125kHz A-scans enables reduction of motion artifacts with increased scanning area if compared to previously reported results. Several scanning schemes with different sampling densities and scanning areas are evaluated to find optimal parameters for in vivo imaging. In order to evaluate this technique, we compare OCT micro-capillary imaging using the phase variance technique with fundus fluorescein angiography (FA). Additionally, volumetric visualization of blood flow for a normal subject is presented
Visualization of human retinal capillary networks: a comparison of intensity, speckle-variance and phase-variance optical coherence tomography
We evaluate methods to visualize human retinal micro-circulation in vivo by standard intensity-based optical coherence tomography (OCT), speckle-variance optical coherence tomography (svOCT), and phase-variance optical coherence tomography (pvOCT). En face projection views created from the same volumetric data set of the human retina using all three data processing methods are created and compared. Additionally we used support vector machine (SVM) based semi-automatic segmentation to generate en face projection views of individual retinal layers. The layers include: first, the whole inner retina (from the nerve fiber layer to the outer nuclear layer), and second, from the ganglion cell layer to the outer nuclear layer. Finally, we compare the retinal vasculature images processed from the three OCT techniques and fluorescein angiography (FA)
Visualization of human retinal and choroidal vascular networks with phase-variance optical coherence tomography
We present in vivo noninvasive retinal and choroidal perfusion maps with phase-variance optical coherence tomography (pvOCT). We acquired a pvOCT volumetric data set of a normal subject and visualized blood circulation in the retina and the choroid. En face projection views of the retina as well as the choroid were generated from a manually segmented volumetric data set. In addition, the processed pvOCT images were compared to current standard imaging modalities used for retinal and choroidal vasculature visualization in clinical settings, including fluorescein angiography (FA) and indocyanine green angiography (ICGA)
- …