6,286 research outputs found

    Gas expulsion in highly substructured embedded star clusters

    Get PDF
    We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10% accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behavior of the gas before being expelled, are crucial processes that affect the timescale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.Comment: 19 pages, 8 figures, 2 tables. Accepted for publication in MNRA

    Healthy Kids Program and the Safety Net: Perceptions of Community Clinic Administrators

    Get PDF
    Based on interviews with clinic CEOs, assesses the impact of the program to provide comprehensive health insurance to children not eligible for Medi-Cal or Healthy Families, including enrollment, services extended, and clinic operations and finances

    Snake states in graphene quantum dots in the presence of a p-n junction

    Full text link
    We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n, as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction, due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell shaped electron distribution. The results are presented as function of the junction parameters and the applied magnetic flux.Comment: 13 pages, 23 figures, to be appeared in Phys. Rev.

    Topological confinement in graphene bilayer quantum rings

    Full text link
    We demonstrate the existence of localized electron and hole states in a ring-shaped potential kink in biased bilayer graphene. Within the continuum description, we show that for sharp potential steps the Dirac equation describing carrier states close to the K (or K') point of the first Brillouin zone can be solved analytically for a circular kink/anti-kink dot. The solutions exhibit interfacial states which exhibit Aharonov-Bohm oscillations as functions of the height of the potential step and/or the radius of the ring

    Electric and magnetic fields effects on the excitonic properties of elliptic core-multishell quantum wires

    Full text link
    The effect of eccentricity distortions of core-multishell quantum wires on their electron, hole and exciton states is theoretically investigated. Within the effective mass approximation, the Schrodinger equation is numerically solved for electrons and holes in systems with single and double radial heterostructures, and the exciton binding energy is calculated by means of a variational approach. We show that the energy spectrum of a core-multishell heterostructure with eccentricity distortions, as well as its magnetic field dependence, are very sensitive to the direction of an externally applied electric field, an effect that can be used to identify the eccentricity of the system. For a double heterostructure, the eccentricities of the inner and outer shells play an important role on the excitonic binding energy, specially in the presence of external magnetic fields, and lead to drastic modifications in the oscillator strength.Comment: 17 pages, 10 figure

    Life and death of a hero - Lessons learned from modeling the dwarf spheroidal Hercules: an incorrect orbit?

    Full text link
    Hercules is a dwarf spheroidal satellite of the Milky Way, found at a distance of about 138 kpc, and showing evidence of tidal disruption. It is very elongated and exhibits a velocity gradient of 16 +/- 3 km/s/kpc. Using this data a possible orbit of Hercules has previously been deduced in the literature. In this study we make use of a novel approach to find a best fit model that follows the published orbit. Instead of using trial and error, we use a systematic approach in order to find a model that fits multiple observables simultaneously. As such, we investigate a much wider parameter range of initial conditions and ensure we have found the best match possible. Using a dark matter free progenitor that undergoes tidal disruption, our best-fit model can simultaneously match the observed luminosity, central surface brightness, effective radius, velocity dispersion, and velocity gradient of Hercules. However, we find it is impossible to reproduce the observed elongation and the position angle of Hercules at the same time in our models. This failure persists even when we vary the duration of the simulation significantly, and consider a more cuspy density distribution for the progenitor. We discuss how this suggests that the published orbit of Hercules is very likely to be incorrect.Comment: accepted by MNRAS; 19 pages, 19 figures, 2 table

    Simplified model for the energy levels of quantum rings in single layer and bilayer graphene

    Full text link
    Within a minimal model, we present analytical expressions for the eigenstates and eigenvalues of carriers confined in quantum rings in monolayer and bilayer graphene. The calculations were performed in the context of the continuum model, by solving the Dirac equation for a zero width ring geometry, i.e. by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and of a non-zero gap in the spectrum. Our minimal model gives insight in the energy spectrum of graphene-based quantum rings and models different aspects of finite width rings.Comment: To appear in Phys. Rev.
    • …
    corecore