9 research outputs found

    Unitary evolution of free massless fields in de Sitter space-time

    Full text link
    We consider the quantum dynamics of a massless scalar field in de Sitter space-time. The classical evolution is represented by a canonical transformation on the phase space for the field theory. By studying the corresponding Bogoliubov transformations, we show that the symplectic map that encodes the evolution between two instants of time cannot be unitarily implemented on any Fock space built from a SO(4)-symmetric complex structure. We will show also that, in contrast with some effectively lower dimensional examples arising from Quantum General Relativity such as Gowdy models, it is impossible to find a time dependent conformal redefinition of the massless scalar field leading to a quantum unitary dynamics.Comment: 20 pages. Comments and references adde

    Hamiltonian Dynamics of Linearly Polarized Gowdy Models Coupled to Massless Scalar Fields

    Get PDF
    The purpose of this paper is to analyze in detail the Hamiltonian formulation for the compact Gowdy models coupled to massless scalar fields as a necessary first step towards their quantization. We will pay special attention to the coupling of matter and those features that arise for the three-handle and three-sphere topologies that are not present in the well studied three torus case -in particular the polar constraints that come from the regularity conditions on the metric. As a byproduct of our analysis we will get an alternative understanding, within the Hamiltonian framework, of the appearance of initial and final singularities for these models.Comment: Final version to appear in Classical and Quantum Gravit

    Quantum Cylindrical Waves and Sigma Models

    Full text link
    We analyze cylindrical gravitational waves in vacuo with general polarization and develop a viewpoint complementary to that presented recently by Niedermaier showing that the auxiliary sigma model associated with this family of waves is not renormalizable in the standard perturbative sense.Comment: 11 pages (DIN A4), accepted in International Journal of Modern Physics

    A Note on the Symmetry Reduction of SU(2) on Horizons of Various Topologies

    Full text link
    It is known that the SU(2) degrees of freedom manifest in the description of the gravitational field in loop quantum gravity are generally reduced to U(1) degrees of freedom on an S2S^2 isolated horizon. General relativity also allows black holes with planar, toroidal, or higher genus topology for their horizons. These solutions also meet the criteria for an isolated horizon, save for the topological criterion, which is not crucial. We discuss the relevant corresponding symmetry reduction for black holes of various topologies (genus 0 and 2\geq 2) here and discuss its ramifications to black hole entropy within the loop quantum gravity paradigm. Quantities relevant to the horizon theory are calculated explicitly using a generalized ansatz for the connection and densitized triad, as well as utilizing a general metric admitting hyperbolic sub-spaces. In all scenarios, the internal symmetry may be reduced to combinations of U(1).Comment: 13 pages, two figures. Version 2 has several references updated and added, as well as some minor changes to the text. Accepted for publication in Class. Quant. Gra

    The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment

    No full text
    corecore