8,870 research outputs found

    Competition between spin density wave order and superconductivity in the underdoped cuprates

    Get PDF
    We describe the interplay between d-wave superconductivity and spin density wave (SDW) order in a theory of the hole-doped cuprates at hole densities below optimal doping. The theory assumes local SDW order, and associated electron and hole pocket Fermi surfaces of charge carriers in the normal state. We describe quantum and thermal fluctuations in the orientation of the local SDW order, which lead to d-wave superconductivity: we compute the superconducting critical temperature and magnetic field in a `minimal' universal theory. We also describe the back-action of the superconductivity on the SDW order, showing that SDW order is more stable in the metal. Our results capture key aspects of the phase diagram of Demler et al. (cond-mat/0103192) obtained in a phenomenological quantum theory of competing orders. Finally, we propose a finite temperature crossover phase diagram for the cuprates. In the metallic state, these are controlled by a `hidden' quantum critical point near optimal doping involving the onset of SDW order in a metal. However, the onset of superconductivity results in a decrease in stability of the SDW order, and consequently the actual SDW quantum critical point appears at a significantly lower doping. All our analysis is placed in the context of recent experimental results.Comment: 27 pages, 11 figures; (v2) added clarifications and refs, and corrected numerical errors (thanks to A. Chubukov

    Non-perturbative models of intermittency in edge turbulence

    Get PDF
    A theory of the probability distribution function (PDF) tails of the blob density in plasma edge turbulence is provided. A simplified model of the fast convective radial transport is used. The theoretically predicted PDF tails corroborate earlier measurements of edge transport, further confirming the strongly non-Gaussian feature of edge transport. It is found that increasing the cross sectional spatial scale length (LxL_x and LyL_y) of the blob results in larger transport whereas increasing the toroidal scale length (LzL_z) decreases the PDF. The results imply that the PDF decreases for larger blob speed vbv_b.Comment: 19 pages, 2 figure

    Interference of nematic quantum critical quasiparticles: a route to the octet model

    Full text link
    Repeated observations of inhomogeneity in cuperate superconductors[1-5] make one immediately question the existance of coherent quasiparticles(qp's) and the applicability of a momentum space picture. Yet, obversations of interference effects[6-9] suggest that the qp's maintain a remarkable coherence under special circumstances. In particular, quasi-particle interference (QPI) imaging using scanning tunneling spectroscopy revealed a highly unusual form of coherence: accumulation of coherence only at special points in momentum space with a particular energy dispersion[5-7]. Here we show that nematic quantum critical fluctuations[10], combined with the known extreme velocity anisotropy[11] provide a natural mechanism for the accumulation of coherence at those special points. Our results raise the intriguing question of whether the nematic fluctuations provide the unique mechanism for such a phenomenon.Comment: 4 pages, 3 figure

    The Spitzer c2d Survey Of Nearby Dense Cores. VII. Chemistry And Dynamics In L43

    Get PDF
    We present results from the Spitzer Space Telescope and molecular line observations of nine species toward the dark cloud L43. The Spitzer images and molecular line maps suggest that it has a starless core and a Class I protostar evolving in the same environment. CO depletion is seen in both sources, and DCO(+) lines are stronger toward the starless core. With a goal of testing the chemical characteristics from pre- to protostellar stages, we adopt an evolutionary chemical model to calculate the molecular abundances and compare with our observations. Among the different model parameters we tested, the best-fit model suggests a longer total timescale at the pre-protostellar stage, but with faster evolution at the later steps with higher densities.NSF AST-0307250, AST0607793NASA NNX07AJ72GNational Research Foundation of Korea (NRF) government (MEST) 2009-0062865KOSEF R012007- 000-20336-0Astronom

    Resonance enhanced turbulent transport

    Get PDF
    The effect of oscillatory shear flows on turbulent transport of passive scalar fields is studied by numerical computations based on the results provided by E. Kim [Physics of Plasmas 13, 022308 (2006)] . Turbulent diffusion is found to depend crucially on the competition between suppression due to shearing and enhancement due to resonances, depending on the characteristic time and length scales of shear flow and turbulence. Enhancements in transport occur for turbulence with finite memory time either due to Doppler or parametric resonances. Scalings of turbulence amplitude and transport are provided in different parameter spaces. The results suggest that oscillatory shear flows are not only less efficient in regulating turbulence, but also can enhance the value of turbulent diffusion, accelerating turbulent transport
    • …
    corecore