274 research outputs found

    On the dynamics created by a time--dependent Aharonov-Bohm flux

    Full text link
    We study the dynamics of classical and quantum particles moving in a punctured plane under the influence of a homogeneous magnetic field and driven by a time-dependent singular flux tube through the hole

    Transport and Dissipation in Quantum Pumps

    Full text link
    This paper is about adiabatic transport in quantum pumps. The notion of ``energy shift'', a self-adjoint operator dual to the Wigner time delay, plays a role in our approach: It determines the current, the dissipation, the noise and the entropy currents in quantum pumps. We discuss the geometric and topological content of adiabatic transport and show that the mechanism of Thouless and Niu for quantized transport via Chern numbers cannot be realized in quantum pumps where Chern numbers necessarily vanish.Comment: 31 pages, 10 figure

    Dynamics of a classical Hall system driven by a time-dependent Aharonov--Bohm flux

    Full text link
    We study the dynamics of a classical particle moving in a punctured plane under the influence of a strong homogeneous magnetic field, an electrical background, and driven by a time-dependent singular flux tube through the hole. We exhibit a striking classical (de)localization effect: in the far past the trajectories are spirals around a bound center; the particle moves inward towards the flux tube loosing kinetic energy. After hitting the puncture it becomes ``conducting'': the motion is a cycloid around a center whose drift is outgoing, orthogonal to the electric field, diffusive, and without energy loss

    The weak localization for the alloy-type Anderson model on a cubic lattice

    Full text link
    We consider alloy type random Schr\"odinger operators on a cubic lattice whose randomness is generated by the sign-indefinite single-site potential. We derive Anderson localization for this class of models in the Lifshitz tails regime, i.e. when the coupling parameter λ\lambda is small, for the energies E≀−Cλ2E \le -C \lambda^2.Comment: 45 pages, 2 figures. To appear in J. Stat. Phy

    Mean-Field Dynamics: Singular Potentials and Rate of Convergence

    Full text link
    We consider the time evolution of a system of NN identical bosons whose interaction potential is rescaled by N−1N^{-1}. We choose the initial wave function to describe a condensate in which all particles are in the same one-particle state. It is well known that in the mean-field limit N→∞N \to \infty the quantum NN-body dynamics is governed by the nonlinear Hartree equation. Using a nonperturbative method, we extend previous results on the mean-field limit in two directions. First, we allow a large class of singular interaction potentials as well as strong, possibly time-dependent external potentials. Second, we derive bounds on the rate of convergence of the quantum NN-body dynamics to the Hartree dynamics.Comment: Typos correcte

    Anderson localization for a class of models with a sign-indefinite single-site potential via fractional moment method

    Full text link
    A technically convenient signature of Anderson localization is exponential decay of the fractional moments of the Green function within appropriate energy ranges. We consider a random Hamiltonian on a lattice whose randomness is generated by the sign-indefinite single-site potential, which is however sign-definite at the boundary of its support. For this class of Anderson operators we establish a finite-volume criterion which implies that above mentioned the fractional moment decay property holds. This constructive criterion is satisfied at typical perturbative regimes, e. g. at spectral boundaries which satisfy 'Lifshitz tail estimates' on the density of states and for sufficiently strong disorder. We also show how the fractional moment method facilitates the proof of exponential (spectral) localization for such random potentials.Comment: 29 pages, 1 figure, to appear in AH

    Anomalous decay of a prepared state due to non-Ohmic coupling to the continuum

    Full text link
    We study the decay of a prepared state E0E_0 into a continuum {E_k} in the case of non-Ohmic models. This means that the coupling is ∣Vk,0∣∝∣Ek−E0∣s−1|V_{k,0}| \propto |E_k-E_0|^{s-1} with s≠1s \ne 1. We find that irrespective of model details there is a universal generalized Wigner time t0t_0 that characterizes the evolution of the survival probability P0(t)P_0(t). The generic decay behavior which is implied by rate equation phenomenology is a slowing down stretched exponential, reflecting the gradual resolution of the bandprofile. But depending on non-universal features of the model a power-law decay might take over: it is only for an Ohmic coupling to the continuum that we get a robust exponential decay that is insensitive to the nature of the intra-continuum couplings. The analysis highlights the co-existence of perturbative and non-perturbative features in the dynamics. It turns out that there are special circumstances in which t0t_0 is reflected in the spreading process and not only in the survival probability, contrary to the naive linear response theory expectation.Comment: 13 pages, 11 figure

    Time-Energy coherent states and adiabatic scattering

    Full text link
    Coherent states in the time-energy plane provide a natural basis to study adiabatic scattering. We relate the (diagonal) matrix elements of the scattering matrix in this basis with the frozen on-shell scattering data. We describe an exactly solvable model, and show that the error in the frozen data cannot be estimated by the Wigner time delay alone. We introduce the notion of energy shift, a conjugate of Wigner time delay, and show that for incoming state ρ(H0)\rho(H_0) the energy shift determines the outgoing state.Comment: 11 pages, 1 figur

    Rate of Convergence Towards Hartree Dynamics

    Full text link
    We consider a system of N bosons interacting through a two-body potential with, possibly, Coulomb-type singularities. We show that the difference between the many-body Schr\"odinger evolution in the mean-field regime and the effective nonlinear Hartree dynamics is at most of the order 1/N, for any fixed time. The N-dependence of the bound is optimal.Comment: 26 page
    • 

    corecore