952 research outputs found
Materials analysis of fluorocarbon films for MEMS applications
In this paper the results of the materials analysis of fluorocarbon (FC) films are presented. The properties of the fluorocarbon films are comparable to those of polytetrafluoroethylene (PTFE), better known under the trademarks such as teflon and fluon. The properties of PTFE are desirable for MEMS applications and enable new designs, new applications and new technological processing routes for microsystems. Therefore, FC films have a tremendous potential for MEMS applications. Furthermore, FC films can easily be deposited via spin coating, e-beam evaporation, in conventional reactive ion etchers and in plasma-enhanced deposition chambers using a carbonhydrotrifluoride plasma facilitating the use of the films for micro electro-mechanical structures. The films deposited in a reactive ion etcher are extremely chemical resistant. The X-ray photoelectron spectroscopy (XPS) analyses results are presente
Deemo: a new technology for the fabrication of microstructures
The recent innovations in dry etching make it a promising technology for the fabrications of micromoulds. The high aspect ratios, directional freedom, low roughness, high etch rates and high selectivity with respect to the mask material allow a versatile fabrication process of micromoulds for subsequent electroplating and embossing, as is demonstrated with the DEEMO process. DEEMO is an English acronym and stands for Dry Etching, Electroplating and Moulding
Characteristics of high quality ZnO thin films deposited by pulsed laser deposition
This paper show that under optimized deposition condition, films can be grown having a full width at half maximum (FWHM) value of the (002) x-ray diffraction (XRD) line a factor of 4 smaller than the previously published results using PLD and among the best reported so far by any technique. Under optimized conditions, c-axis oriented ZnO films having a FWHM value of the (002) XRD reflection line less than 15°, electrical resistivities around 5 × 10-2 Ω cm and optical transmittance higher than 85% in the visible region of the spectrum were obtained. Refractive index was around 1.98 and the Eg = 3.26 eV, values characteristic of very high quality ZnO thin films
Growth of ZnO thin films on GaAs by pulsed laser deposition
ZnO thin films have been grown on GaAs substrates using the pulsed laser deposition technique with or without a photodeposited SiO2 buffer layer. The presence of the SiO2 layer has a beneficial effect on the crystalline quality of the grown ZnO films. Highly c-axis oriented ZnO films having a full width at half maximum value of the (002) X-ray diffraction line of less than 0.13 ° have been grown on such buffer layers at a substrate temperature of only 350 °C
The Ethics of St. Thomas Aquinas
A study of the most important aspects in the ethics of Thomas Aquinas, with special emphasis on its current relevance
La lectura «super epistolam ad hebraeos» de Santo Tomás de Aquino.
Seguir la lectura de Santo
Tomás sobre «Hebreos» es obligarse a
pensar, a meditar de manera más profunda
el significado del texto sagrado.
El artĂculo quiere mostrar las
concatenaciones del texto de Santo
Tomás cuando se examinan con una
perspectiva más teológica y más profunda
Demonstration of sustained and useful converter responses during balanced and unbalanced faults in microgrids
In large power grids where converter penetration is presently low and the network impedance is predominantly reactive, the required response from converters during faults is presently specified by phrases such as “maximum reactive output”. However, in marine and aero power systems most faults are unbalanced, the network impedance is resistive, and converter penetration may be high. Therefore a balanced reactive fault current response to an unbalanced fault may lead to over-voltages or over/under frequency events. Instead, this paper presents a method of controlling the converter as a balanced voltage source behind a reactance, thereby emulating the fault response of a synchronous generator (SG) as closely as possible. In this mode there is a risk of converter destruction due to overcurrent. A new way of preventing destruction but still providing fault performance as close to a SG as possible is presented. Demonstrations are presented of simulations and laboratory testing at the 10kVA 400V scale, with balanced and unbalanced faults. Currents can be limited to about 1.5pu while still providing appropriate unbalanced fault response within a resistive network
- …