2,104 research outputs found

    Acoustic confinement and Stimulated Brillouin Scattering in integrated optical waveguides

    Full text link
    We examine the effect of acoustic mode confinement on Stimulated Brillouin Scattering in optical waveguides that consist of a guiding core embedded in a solid substrate. We find that SBS can arise due to coupling to acoustic modes in three different regimes. First, the acoustic modes may be guided by total internal reflection; in this case the SBS gain depends directly on the degree of confinement of the acoustic mode in the core, which is in turn determined by the acoustic V-parameter. Second, the acoustic modes may be leaky, but may nevertheless have a sufficiently long lifetime to have a large effect on the SBS gain; the lifetime of acoustic modes in this regime depends not only on the contrast in acoustic properties between the core and the cladding, but is also highly dependent on the waveguide dimensions. Finally SBS may occur due to coupling to free modes, which exist even in the absence of acoustic confinement; we find that the cumulative effect of coupling to these non-confined modes results in significant SBS gain. We show how the different acoustic properties of core and cladding lead to these different regimes, and discuss the feasibility of SBS experiments using different material systems

    Optimizing optical Bragg scattering for single-photon frequency conversion

    Full text link
    We develop a systematic theory for optimising single-photon frequency conversion using optical Bragg scattering. The efficiency and phase-matching conditions for the desired Bragg scattering conversion as well as spurious scattering and modulation instability are identified. We find that third-order dispersion can suppress unwanted processes, while dispersion above the fourth order limits the maximum conversion efficiency. We apply the optimisation conditions to frequency conversion in highly nonlinear fiber, silicon nitride waveguides and silicon nanowires. Efficient conversion is confirmed using full numerical simulations. These design rules will assist the development of efficient quantum frequency conversion between multicolour single photon sources for integration in complex quantum networks.Comment: 9 pages, 14 figure

    Gap soliton formation by nonlinear supratransmission in Bragg media

    Full text link
    A Bragg medium in the nonlinear Kerr regime, submitted to incident cw-radiation at a frequency in a band gap, switches from total reflection to transmission when the incident energy overcomes some threshold. We demonstrate that this is a result of nonlinear supratransmission, which allows to prove that i) the threshold incident amplitude is simply expressed in terms of the deviation from the Bragg resonance, ii) the process is not the result of a shift of the gap in the nonlinear dispersion relation, iii) the transmission does occur by means of gap soliton trains, as experimentally observed [D. Taverner et al., Opt Lett 23 (1998) 328], iv) the required energy tends to zero close to the band edge.Comment: 5 figures, submitted to EuroPhysics Letter

    The Zero Age Main Sequence of WIMP burners

    Get PDF
    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence WIMP burners look much like protostars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations which are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically young OB stars found at the galactic centre with WIMP burners.Comment: 4 pages, 3 figs. Matches published versio
    • …
    corecore