1,645 research outputs found

    Smartphone sensing platform for emergency management

    Full text link
    The increasingly sophisticated sensors supported by modern smartphones open up novel research opportunities, such as mobile phone sensing. One of the most challenging of these research areas is context-aware and activity recognition. The SmartRescue project takes advantage of smartphone sensing, processing and communication capabilities to monitor hazards and track people in a disaster. The goal is to help crisis managers and members of the public in early hazard detection, prediction, and in devising risk-minimizing evacuation plans when disaster strikes. In this paper we suggest a novel smartphone-based communication framework. It uses specific machine learning techniques that intelligently process sensor readings into useful information for the crisis responders. Core to the framework is a content-based publish-subscribe mechanism that allows flexible sharing of sensor data and computation results. We also evaluate a preliminary implementation of the platform, involving a smartphone app that reads and shares mobile phone sensor data for activity recognition.Comment: 11th International Conference on Information Systems for Crisis Response and Management ISCRAM2014 (2014

    Consumption of submerged aquatic macrophytes by rudd (scardinius erythrophthalmus L.) in New Zealand

    Get PDF
    In experiments in New Zealand, rudd (Scardinius erythrophthalmus L.) of 108–277mm fork length (FL) ate a wide range of native and introduced submerged aquatic macrophytes in captivity and in the field. Rudd consumed the native charophytes Chara globularis Thuill., Chara fibrosa Ag. ex Bruz., and Nitella spp., the native macrophytes Potamogeton ochreatus Raoul. and Myriophyllum propinquum A. Cunn., and the introduced macrophytes Elodea canadensis Michx., Egeria densa Planch., Lagarosiphon major L., and Ceratophyllum demersum L. Rudd consistently consumed the Nitella spp. and Potamogeton ochreatus before Ceratophyllum demersum. From the results of experiments in tanks and in the field, we found the order of highest to lowest palatability was: Nitella spp. > Potamogeton ochreatus > Elodea canadensis> Chara globularis = Chara fibrosa> Egeria densa = Lagarosiphon major > Myriophyllum propinquum > Ceratophyllum demersum. The order of consumption was subject to some variation with season, especially for Egeria densa, Lagarosiphon major, and Myriophyllum propinquum. Rudd consumed up to 20% of their body weight per day of Egeria densa in spring, and 22% of their body weight per day of Nitella spp. in summer. Consumption rates were considerably lower in winter than in summer. The results of our field trial suggested that the order of consumption also applies in the field and that rudd are having a profound impact on vulnerable native aquatic plant communities in New Zealand. Nitella spp. and Potamogeton ochreatus are likely to be selectively eaten, and herbivory by rudd might prevent the re-establishment of these species in restoration efforts

    Probing the Fermi surface by positron annihilation and Compton scattering

    Get PDF
    Positron annihilation and Compton scattering are important probes of the Fermi surface. Relying on conservation of energy and momentum, being bulk sensitive and not limited by short electronic mean-free-paths, they can provide unique information in circumstances when other methods fail. Using a variety of examples, their contribution to knowledge about the electronic structure of a wide range of materials is demonstrated

    Fermi surface of an important nano-sized metastable phase: Al3_3Li

    Full text link
    Nanoscale particles embedded in a metallic matrix are of considerable interest as a route towards identifying and tailoring material properties. We present a detailed investigation of the electronic structure, and in particular the Fermi surface, of a nanoscale phase (L12L1_2 Al3_3Li) that has so far been inaccessible with conventional techniques, despite playing a key role in determining the favorable material properties of the alloy (Al\nobreakdash-9 at. %\nobreakdash-Li). The ordered precipitates only form within the stabilizing Al matrix and do not exist in the bulk; here, we take advantage of the strong positron affinity of Li to directly probe the Fermi surface of Al3_3Li. Through comparison with band structure calculations, we demonstrate that the positron uniquely probes these precipitates, and present a 'tuned' Fermi surface for this elusive phase

    Experimental determination of the state-dependent enhancement of the electron-positron momentum density in solids

    Full text link
    The state-dependence of the enhancement of the electron-positron momentum density is investigated for some transition and simple metals (Cr, V, Ag and Al). Quantitative comparison with linearized muffin-tin orbital calculations of the corresponding quantity in the first Brillouin zone is shown to yield a measurement of the enhancement of the s, p and d states, independent of any parameterizations in terms of the electron density local to the positron. An empirical correction that can be applied to a first-principles state-dependent model is proposed that reproduces the measured state-dependence very well, yielding a general, predictive model for the enhancement of the momentum distribution of positron annihilation measurements, including those of angular correlation and coincidence Doppler broadening techniques

    First-principles study of electron-phonon superconductivity in YSn <sub>3</sub>

    Get PDF

    Three-dimensional in situ observations of compressive damage mechanisms in syntactic foam using X-ray microcomputed tomography

    Get PDF
    Royal Society Grant number RG140680 Lloyd's Register Foundation (GB) Oil and Gas Academy of Scotland Open access via Springer Compact AgreementPeer reviewedPublisher PD

    Fermi surface of the colossal magnetoresistance perovskite La_{0.7}Sr_{0.3}MnO_{3}

    Full text link
    Materials that exhibit colossal magnetoresistance (CMR) are currently the focus of an intense research effort, driven by the technological applications that their sensitivity lends them to. Using the angular correlation of photons from electron-positron annihilation, we present a first glimpse of the Fermi surface of a material that exhibits CMR, supported by ``virtual crystal'' electronic structure calculations. The Fermi surface is shown to be sufficiently cubic in nature that it is likely to support nesting.Comment: 5 pages, 5 PS figure
    corecore