1,127 research outputs found

    Aharonov-Bohm oscillations in the local density of states

    Full text link
    The scattering of electrons with inhomogeneities produces modulations in the local density of states of a metal. We show that electron interference contributions to these modulations are affected by the magnetic field via the Aharonov-Bohm effect. This can be exploited in a simple STM setup that serves as an Aharonov-Bohm interferometer at the nanometer scale.Comment: 4 pages, 2 figures. v2 added reference

    Quantum Critical Behavior in Kondo Systems

    Full text link
    This article briefly reviews three topics related to the quantum critical behavior of certain heavy-fermion systems. First, we summarize an extended dynamical mean-field theory for the Kondo lattice, which treats on an equal footing the quantum fluctuations associated with the Kondo and RKKY couplings. The dynamical mean-field equations describe an effective Kondo impurity model with an additional coupling to vector bosons. Two types of quantum phase transition appear to be possible within this approach---the first a conventional spin-density-wave transition, the second driven by local physics. For the second type of transition to be realized, the effective impurity model must have a quantum critical point exhibiting an anomalous local spin susceptibility. In the second part of the paper, such a critical point is shown to occur in two variants of the Kondo impurity problem. Finally, we propose an operational test for the existence of quantum critical behavior driven by local physics. Neutron scattering results suggest that CeCu6−x_{6-x}Aux_x passes this test.Comment: 6 pages, 4 eps figures, REVTeX (epsf style

    Pressure-tuned First-order Phase Transition and Accompanying Resistivity Anomaly in CeZn_{1-\delta}Sb_{2}

    Get PDF
    The Kondo lattice system CeZn_{0.66}Sb_{2} is studied by the electrical resistivity and ac magnetic susceptibility measurements at several pressures. At P=0 kbar, ferromagnetic and antiferromagnetic transitions appear at 3.6 and 0.8 K, respectively. The electrical resistivity at T_N dramatically changes from the Fisher-Langer type (ferromagnetic like) to the Suzaki-Mori type near 17 kbar, i.e., from a positive divergence to a negative divergence in the temperature derivative of the resistivity. The pressure-induced SM type anomaly, which shows thermal hysteresis, is easily suppressed by small magnetic field (1.9 kOe for 19.8 kbar), indicating a weakly first-order nature of the transition. By subtracting a low-pressure data set, we directly compare the resistivity anomaly with the SM theory without any assumption on backgrounds, where the negative divergence in d\rho/dT is ascribed to enhanced critical fluctuations in the presence of superzone gaps.Comment: 5 pages, 4 figures; journal-ref adde

    The Kondo-Hubbard model at half-filling

    Full text link
    We have analyzed the antiferromagnetic (J>0) Kondo-Hubbard lattice with the band at half-filling by means of a perturbative approach in the strong coupling limit, the small parameter is an arbitrary tight-binding band. The results are valid for any band shape and any dimension. We have obtained the energies of elementary charge and spin excitations as well as the magnetic correlations in order to elucidate the magnetic and charge behavior of the Kondo lattice at half-filling. Finally, we have briefly analyzed the ferromagnetic case (J<0), which is shown to be equivalent to an effective antiferromagnetic Heisenberg model.Comment: 4 pages, Proceedings of SCES98/Pari

    Ferromagnetic transition in a double-exchange system containing impurities in the Dynamical Mean Field Approximation

    Full text link
    We formulate the Dynamical Mean Field Approximation equations for the double-exchange system with quenched disorder for arbitrary relation between Hund exchange coupling and electron band width. Close to the ferromagnetic-paramagnetic transition point the DMFA equations can be reduced to the ordinary mean field equation of Curie-Weiss type. We solve the equation to find the transition temperature and present the magnetic phase diagram of the system.Comment: 5 pages, latex, 2 eps figures. We explicitely present the magnetic phase diagram of the syste

    High-pressure study of non-Fermi liquid and spin-glass-like behavior in CeRhSn

    Full text link
    We present measurements of the temperature dependence of electrical resistivity of CeRhSn up to ~ 27 kbar. At low temperatures, the electrical resistivity varies linearly with temperature for all pressures, indicating non-Fermi liquid behavior. Below a temperature Tf ~ 6 K, the electrical resistivity deviates from a linear dependence. We found that the low-temperature feature centered at T = Tf shows a pressure dependence dTf/dP ~ 30 mK/kbar which is typical of canonical spin glasses. This interplay between spin-glass-like and non-Fermi liquid behavior was observed in both CeRhSn and a Ce0.9La0.1RhSn alloy.Comment: 5 pages, 3 figures, accepted for publication to Journal of Physics: Condensed Matte

    Nonequilibrium steady states of driven magnetic flux lines in disordered type-II superconductors

    Full text link
    We investigate driven magnetic flux lines in layered type-II superconductors subject to various configurations of strong point or columnar pinning centers by means of a three-dimensional elastic line model and Metropolis Monte Carlo simulations. We characterize the resulting nonequilibrium steady states by means of the force-velocity / current-voltage curve, static structure factor, mean vortex radius of gyration, number of double-kink and half-loop excitations, and velocity / voltage noise spectrum. We compare the results for the above observables for randomly distributed point and columnar defects, and demonstrate that the three-dimensional flux line structures and their fluctuations lead to a remarkable variety of complex phenomena in the steady-state transport properties of bulk superconductors.Comment: 23 pages, IOP style, 18 figures include
    • …
    corecore