20 research outputs found

    Addressing student models of energy loss in quantum tunnelling

    Full text link
    We report on a multi-year, multi-institution study to investigate student reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews, and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wave functions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical, and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb 10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with revisions that include an appendix with the curriculum materials discussed in the paper (4 page small group UW-style tutorial

    Miracles and complementarity in de Sitter space

    Get PDF
    In this paper we consider a scenario, consisting of a de Sitter phase followed by a phase described by a scale factor a(t)tqa(t)\sim t^{q}, where 1/3<q<11/3<q<1, which can be viewed as an inflationary toy model. It is argued that this scenario naively could lead to an information paradox. We propose that the phenomenon of Poincar\'{e} recurrences plays a crucial role in the resolution of the paradox. We also comment on the relevance of these results to inflation and the CMBR.Comment: 13 page
    corecore