40 research outputs found
Accessing 3D Location of Standing Pelvis: Relative Position of Sacral Plateau and Acetabular Cavities versus Pelvis
The goal of this paper is to access to pelvis position and morphology in standing posture and to determine the relative locations of their articular surfaces. This is obtained from coupling biplanar radiography and bone modeling. The technique involves different successive steps. Punctual landmarks are first reconstructed, in space, from their projected images, identified on two orthogonal standing X-rays. Geometric models, of global pelvis and articular surfaces, are determined from punctual landmarks. The global pelvis is represented as a triangle of summits: the two femoral head centers and the sacral plateau center. The two acetabular cavities are modeled as hemispheres. The anterior sacral plateau edge is represented by an hemi-ellipsis. The modeled articular surfaces are projected on each X-ray. Their optimal location is obtained when the projected contours of their models best fit real outlines identified from landmark images. Linear and angular parameters characterizing the position of global pelvis and articular surfaces are calculated from the corresponding sets of axis. Relative positions of sacral plateau, and acetabular cavities, are then calculated. Two hundred standing pelvis, of subjects and scoliotic patients, have been studied. Examples are presented. They focus upon pelvis orientations, relative positions of articular surfaces, and pelvis asymmetries
Geometric Structure of 3D Spinal Curves: Plane Regions and Connecting Zones
This paper presents a new study of the geometric structure of 3D spinal curves. The spine is considered as an heterogeneous beam, compound of vertebrae and intervertebral discs. The spine is modeled as a deformable wire along which vertebrae are beads rotating about the wire. 3D spinal curves are compound of plane regions connected together by zones of transition. The 3D spinal curve is uniquely flexed along the plane regions. The angular offsets between adjacent regions are concentrated at level of the middle zones of transition, so illustrating the heterogeneity of the spinal geometric structure. The plane regions along the 3D spinal curve must satisfy two criteria: (i) a criterion of minimum distance between the curve and the regional plane and (ii) a criterion controlling that the curve is continuously plane at the level of the region. The geometric structure of each 3D spinal curve is characterized by the sizes and orientations of regional planes, by the parameters representing flexed regions and by the sizes and functions of zones of transition. Spinal curves of asymptomatic subjects show three plane regions corresponding to spinal curvatures: lumbar, thoracic and cervical curvatures. In some scoliotic spines, four plane regions may be detected.</jats:p
GLOBAL STABILITY AND BIFURCATIONS ANALYSIS OF AN EPIDEMIC MODEL WITH CONSTANT REMOVAL RATE OF THE INFECTIVE
In this thesis we consider an epidemic model with a constant removal rate of infective individuals is proposed to understand the effect of limited resources for treatment of infective on the disease spread. It is found that it is unnecessary to take such a large treatment capacity that endemic equilibria disappear to eradicate the disease. It is shown that the outcome of disease spread may depend on the position of the initial states for certain range of parameters. It is also shown that the model undergoes a sequence of bifurcations including saddle-node bifurcation, subcritical Hopf bifurcation. Keyword: Epidemic model, nonlinear incidence rate, basic reproduction number, local and global stabilit
A solidification procedure to facilitate kinematic analyses based on video system data
Classification of pelvic and spinal postural patterns in upright position. Specific cases of scoliotic patients
Kinematic and dynamic behaviour of the knee joint projected onto the anatomical knee frame access to knee stiffnesses, comparison between normal subjects and patients with anterior cruciate ligament deficiency
Camparason of different knee states intact, without A.C.L and prosthetic kinematics using a simulator
No Abstract. Technologies Avancess Vol. 16 2003: pp. 31-3
