65 research outputs found

    Statistical evaluation of cross-classifications derived from rearranged community data matrices

    Get PDF
    In order to enhance interpretation of two-way contingency tables (cross-classifications) derived from two hierarchical classifications, new indices are suggested to evaluate the relative contribution of nodes in either hierarchy to the nodes or to a partition of groups derived from the other hierarchy. Using these tools, cut-levels in both hierarchies can be found to define optimal partitions, and groups from both partitions can be associated in order to identify their mutual relationships. The method is illustrated with an actual example from vegetation ecology

    Geometric design of friction ring dampers in blisks using nonlinear modal analysis and Kriging surrogate model

    Get PDF
    Integrally bladed disks (blisk) have been widely used in the turbo-machinery industry due to its high aerodynamic performance and structural efficiency. A friction ring damper (FRD) is usually integrated in the system to improve its low damping. However, the design of the geometry of this FRD become complex and computationally expensive due to the strong nonlinearities from friction interfaces. In this work, we propose an efficient modelling strategy based on advanced nonlinear modal analysis and Kriging surrogate models to design and optimize the geometry of a 3D FRD attached to a high fidelity full-scale blisk. The 3D ring damper is parametrised with a few key geometrical parameters. The impact of each geometric parameter and their sensitivities to nonlinear dynamic response can be efficiently assessed using Kriging meta-modelling based on a few damped nonlinear normal modes. Results demonstrate that the damping performances of ring dampers can be substantially optimized through the proposed modelling strategy whilst key insights for the design of the rings are given. It is also demonstrated that the distribution of the contact normal load on the contact interfaces has a strong influence on the damping performances and can be effectively tuned via the upper surface geometry of the ring dampers

    On the influence of multiple contact conditions on brake squeal

    Get PDF
    This study focuses on squeal noise prediction for an automotive brake system. For this purpose, a stability study of a finite element model of the brake system is carried out. For the determination of the squeal propensity of a brake system via finite element models, the commonly used approach consists in considering only a friction coefficient at the pad-disc interface. However, numerous other contacts exist in a brake system. In the present study, the influence of several contacts between the caliper, the bracket, the pad and the piston is studied. It turns out that the consideration of these numerous contacts has a real impact on the stability results and can not therefore be neglected. Indeed, a high dispersion of results for the system’s eigenvalues indicating strong modifications of the stability behavior and thus of the squeal propensity is observed when different contact conditions are considered. This study insights the necessity to take into account of all contact conditions during the design process of brake systems

    Exact conditional tests for a reciprocal interpretation of hierarchical classifications built on a two way contingecy table.

    No full text
    • …
    corecore