197 research outputs found

    California Education Foundations: A Mixed Methods Study

    Get PDF
    Limited and unstable funding for education has inspired supporters of schools to seek private funds to help pay for public education. Private funds generated at the local level could also, conceivably, reinstate at least a modicum of local control of public schools. Local control, in California at least, has been minimized over the last 30 years as a result of a number of legal decisions related to equity and ballot initiatives such as Proposition 13. One mechanism for channeling private funds to public schools is nonprofit education foundations linked to schools or districts. The total number of these foundations has been growing exponentially throughout California and other states for the last three decades. Over the same period, the total assets of education foundations and the revenue generated for beneficiary schools and districts has grown as well. As education foundations become more influential in public school systems, questions arise about their impact on issues of equity and the distribution of power, as well as about their overall efficacy in promoting school improvement and student achievement. Before such nuanced questions can be addressed, however, some sort of mapping of existing education foundations and their operations is required. This study represents an initial step in this mapping process and provides baseline information for future policy studies. T he study employed a two-phase, mixed-methods research design. The first phase of the study entailed analyzing both existing databases about nonprofit organizations and the results of a survey administered as part of the study. Data from phase 1 describe general characteristics of nonprofit education foundations in California and identify how different education foundations address the following key organizational elements identified in the literature on nonprofit organizations: organizational structure, board governance, fundraising, program delivery, advocacy efforts, and community relationships. The second phase of the study consisted of case studies of three different education foundations. Findings from this phase complemented the study\u27s quantitative results by providing relatively thick description of each organization\u27s mission, structure, external relationships, measures of success, and advocacy efforts. The cases also documented the strengths, weaknesses, opportunities, and threats articulated by key stakeholders

    Morphologic Parameters for Successful Lunar Landing Sites

    Get PDF
    The Moon, with its abundant resources, intriguing science questions, and vast unexplored surface area, is the most attainable and useful near-term target for future human exploration. In recognition of this fact, Presidential Space Policy Directive 1 (PSPD-1) has directed the United States to return to the Moon for long-term exploration and utilization, beginning with the 7th American human lunar landing by 2024 and building to sustainable surface presence by 2028

    High Average Brilliance Compact Inverse Compton Light Source

    Get PDF
    There exists an increasing demand for compact Inverse Compton Light Sources (ICLS) capable of producing substantial fluxes of narrow-band X-rays. While multiple design proposals have been made, compared to typical bremsstrahlung sources, most of these have comparable fluxes and improve on the brilliance within a 0.1% bandwidth by only a few orders of magnitude. By applying cw superconducting rf beam acceleration and rf focusing to produce a beam of small emittance and magnetic focusing to produce a small spot size on the order of a few microns at collision, the source presented here provides a 12 keV X-ray beam which outperforms other compact designs and bremsstrahlung sources. Compared to a bremsstrahlung source, the flux is improved by at least an order of magnitude and the average brilliance by six orders of magnitude. Surpassing other compact ICLS designs, the source presented here is attractive to a wide variety of potential users

    High-Brilliance, High-Flux Compact Inverse Compton Light Source

    Get PDF
    The Old Dominion University Compact Light Source (ODU CLS) design concept is presented-a compact Inverse Compton Light Source (ICLS) with flux and brilliance orders of magnitude beyond conventional laboratory-scale sources and greater than other compact ICLS designs. This concept utilizes the physics of inverse Compton scattering of an extremely low emittance electron beam by a laser pulse of rms length of approximately two-thirds of a picosecond (2/3 ps). The accelerator is composed of a superconducting radio frequency (SRF) reentrant gun followed by four double-spoke SRF cavities. After the linac are three quadrupole magnets to focus the electron beam to the interaction point (IP). The distance from cathode surface to 1P is less than 6 m, with the cathode producing electron bunches with a bunch charge of 10 pC and a few picoseconds in length. The incident laser has 1 MW circulating power, a 1 micron wavelength, and a spot size of 3.2 microns at the IP. The repetition rate of this source is 100 MHz, in order to achieve a high flux despite the low bunch charge. The anticipated x-ray source parameters include an energy of 12 keV, with a total flux of 2.2 x 10(13) ph/s, the flux into a 0.1% bandwidth of 3.3 x 10(10) ph/(s0.1%BW), and the average brilliance of 3.4 x 10(14) ph/ (s mm(2 )mrad(2) 0.1%BW)

    The Peculiar Atmospheric Chemistry of KELT-9b

    Get PDF
    The atmospheric temperatures of the ultra-hot Jupiter KELT-9b straddle the transition between gas giants and stars, and therefore between two traditionally distinct regimes of atmospheric chemistry. Previous theoretical studies assume the atmosphere of KELT-9b to be in chemical equilibrium. Despite the high ultraviolet flux from KELT-9, we show using photochemical kinetics calculations that the observable atmosphere of KELT-9b is predicted to be close to chemical equilibrium, which greatly simplifies any theoretical interpretation of its spectra. It also makes the atmosphere of KELT-9b, which is expected to be cloudfree, a tightly constrained chemical system that lends itself to a clean set of theoretical predictions. Due to the lower pressures probed in transmission (compared to emission) spectroscopy, we predict the abundance of water to vary by several orders of magnitude across the atmospheric limb depending on temperature, which makes water a sensitive thermometer. Carbon monoxide is predicted to be the dominant molecule under a wide range of scenarios, rendering it a robust diagnostic of the metallicity when analyzed in tandem with water. All of the other usual suspects (acetylene, ammonia, carbon dioxide, hydrogen cyanide, methane) are predicted to be subdominant at solar metallicity, while atomic oxygen, iron and magnesium are predicted to have relative abundances as high as 1 part in 10,000. Neutral atomic iron is predicted to be seen through a forest of optical and near-infrared lines, which makes KELT-9b suitable for high-resolution ground-based spectroscopy with HARPS-N or CARMENES. We summarize future observational prospects of characterizing the atmosphere of KELT-9b.Comment: Accepted by ApJ. 9 pages, 6 figures. Corrected minor errors in Figures 1a and 1b (some line styles were switched by accident), text and conclusions unchanged, these minor changes will be updated in final ApJ proo

    Beam Dynamics Studies of 499 Mhz Superconducting RF-Dipole Deflecting Cavity System

    Get PDF
    A 499 MHz deflecting cavity has been designed as a three-way beam spreader to separate an electron beam into 3 beams. The rf tests carried out on the superconducting rf-dipole cavity have demonstrated that a transverse voltage of 4.2 MV can be achieved with a single cavity. This paper discusses the beam dynamics on a deflecting structure operating in continuous-wave mode with a relativistic beam. The study includes the analysis on emittance growth, energy spread, and change in bunch size including effects due to field non-uniformities

    Progress on a Compact Accelerator Design for a Compton Light Source

    Get PDF
    A compact Compton light source using an electron linear accelerator is in design at the Center for Accelerator Science at Old Dominion University and Jefferson Lab. We report on the current design, including beam properties through the entire system based on a full end-to-end simulation, compare current specifications to design goals, and target areas for improvement
    corecore