711 research outputs found

    Vortex-glass transition in superconducting Nb/Cu superlattices

    Full text link
    Nb/Cu superconducting superlattices have been fabricated by dc magnetron sputtering. This system shows a vortex glass transition with critical exponents similar to high temperatures superconductors exponents. The transition dymensionality is governed by the superconducting coupling regime. The vortex glass transition shows a pure two dimensional behavior in decoupled superlattices and a quasi-two dimensional behavior in the superlattice coupling regime.Comment: 9 pages, 3 figure

    Ph.D. in Sign Language Education at Gallaudet University: A Viability Study

    Get PDF
    Gallaudet University is proposed to be the home to the world’s first Ph.D. in Sign Language Education program situated in the emerging discipline of sign language pedagogy. There is a need for qualified sign language instructors and leaders at all levels of education. Gallaudet University’s New Program Review requires a proposal to pass through series of stages. This study focused on the viability component of the overall feasibility study in Stage 2. The purpose of the study is to analyze the viability of the proposal by looking into the value, need and interest for the proposed program. The main research questions that guided this study are: “do current and past graduates of a sign language master degree program value and see a professional need for a Ph.D. in Sign Language Education program at Gallaudet University?” and “are current and past graduates of a sign language master degree program interested in pursuing a Ph.D. in Sign Language Education at Gallaudet University?”. A quantitative approach utilizing the survey methodology was developed and administered to 280 prospective students. The survey collected data from 114 participants who completed the survey in its entirety. The sample group consisted of 24 current graduates and 90 past graduates of the Master in Sign Language Education program. This study is important in terms of setting the stage for elevating the long-awaited discipline of sign language pedagogy in line with other world language disciplines. A major finding revealed by this study has shown that current and past graduates of a sign language master degree program value and see a professional need for a Ph.D. in Sign Language Education. An overwhelming majority of the respondents indicated that such program should be implemented at Gallaudet University. Overall the prospective students are interested in pursuing a Ph.D. in Sign Language Education at Gallaudet University, especially within 10 years

    Virtualizing the Stampede2 Supercomputer with Applications to HPC in the Cloud

    Full text link
    Methods developed at the Texas Advanced Computing Center (TACC) are described and demonstrated for automating the construction of an elastic, virtual cluster emulating the Stampede2 high performance computing (HPC) system. The cluster can be built and/or scaled in a matter of minutes on the Jetstream self-service cloud system and shares many properties of the original Stampede2, including: i) common identity management, ii) access to the same file systems, iii) equivalent software application stack and module system, iv) similar job scheduling interface via Slurm. We measure time-to-solution for a number of common scientific applications on our virtual cluster against equivalent runs on Stampede2 and develop an application profile where performance is similar or otherwise acceptable. For such applications, the virtual cluster provides an effective form of "cloud bursting" with the potential to significantly improve overall turnaround time, particularly when Stampede2 is experiencing long queue wait times. In addition, the virtual cluster can be used for test and debug without directly impacting Stampede2. We conclude with a discussion of how science gateways can leverage the TACC Jobs API web service to incorporate this cloud bursting technique transparently to the end user.Comment: 6 pages, 0 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh

    Get PDF
    In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes

    Incorporating Inductances in Tissue-Scale Models of Cardiac Electrophysiology

    Get PDF
    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and [...].Comment: 20 pages, 12 figure

    Three Way Comparison between Two OMI/Aura and One POLDER/PARASOL Cloud Pressure Products

    Get PDF
    The cloud pressures determined by three different algorithms, operating on reflectances measured by two space-borne instruments in the "A" train, are compared with each other. The retrieval algorithms are based on absorption in the oxygen A-band near 760 nm, absorption by a collision induced absorption in oxygen near 477nm, and the filling in of Fraunhofer lines by rotational Raman scattering. The first algorithm operates on data collected by the POLDER instrument on board PARASOL, while the latter two operate on data from the OMI instrument on board Aura. The satellites sample the same air mass within about 15 minutes. Using one month of data, the cloud pressures from the three algorithms are found to show a similar behavior, with correlation coefficients larger than 0.85 between the data sets for thick clouds. The average differences in the cloud pressure are also small, between 2 and 45 hPa, for the whole data set. For optically thin to medium thick clouds, the cloud pressure the distribution found by POLDER is very similar to that found by OMI using the O2 - O2 absorption. Somewhat larger differences are found for very thick clouds, and we hypothesise that the strong absorption in the oxygen A-band causes the POLDER instrument to retrieve lower pressures for those scenes

    Drag Prediction for the DLR-F6 Wing/Body and DPW Wing using CFL3D and OVERFLOW Overset Mesh

    Get PDF
    A series of overset grids was generated in response to the 3rd AIAA CFD Drag Prediction Workshop (DPW-III) which preceded the 25th Applied Aerodynamics Conference in June 2006. DPW-III focused on accurate drag prediction for wing/body and wing-alone configurations. The grid series built for each configuration consists of a coarse, medium, fine, and extra-fine mesh. The medium mesh is first constructed using the current state of best practices for overset grid generation. The medium mesh is then coarsened and enhanced by applying a factor of 1.5 to each (I,J,K) dimension. The resulting set of parametrically equivalent grids increase in size by a factor of roughly 3.5 from one level to the next denser level. CFD simulations were performed on the overset grids using two different RANS flow solvers: CFL3D and OVERFLOW. The results were post-processed using Richardson extrapolation to approximate grid converged values of lift, drag, pitching moment, and angle-of-attack at the design condition. This technique appears to work well if the solution does not contain large regions of separated flow (similar to that seen n the DLR-F6 results) and appropriate grid densities are selected. The extra-fine grid data helped to establish asymptotic grid convergence for both the OVERFLOW FX2B wing/body results and the OVERFLOW DPW-W1/W2 wing-alone results. More CFL3D data is needed to establish grid convergence trends. The medium grid was utilized beyond the grid convergence study by running each configuration at several angles-of-attack so drag polars and lift/pitching moment curves could be evaluated. The alpha sweep results are used to compare data across configurations as well as across flow solvers. With the exception of the wing/body drag polar, the two codes compare well qualitatively showing consistent incremental trends and similar wing pressure comparisons

    Application of unsupervised chemometric analysis and self-organising feature map (SOFM) for the classification of lighter fuels

    Get PDF
    A variety of lighter fuel samples from different manufacturers (both unevaporated and evaporated) were analysed using conventional gas chromatography-mass spectrometry (GC-MS) analysis. In total 51 characteristic peaks were selected as variables and subjected to data pre-processing prior to subsequent analysis using unsupervised chemometric analysis (PCA and HCA) and a SOFM artificial neural network. The results obtained revealed that SOFM acted as a powerful means of evaluating and linking degraded ignitable liquid sample data to their parent unevaporated liquids
    • …
    corecore