114 research outputs found

    Guaranteed energy-efficient bit reset in finite time

    Full text link
    Landauer's principle states that it costs at least kTln2 of work to reset one bit in the presence of a heat bath at temperature T. The bound of kTln2 is achieved in the unphysical infinite-time limit. Here we ask what is possible if one is restricted to finite-time protocols. We prove analytically that it is possible to reset a bit with a work cost close to kTln2 in a finite time. We construct an explicit protocol that achieves this, which involves changing the system's Hamiltonian avoiding quantum coherences, and thermalising. Using concepts and techniques pertaining to single-shot statistical mechanics, we further develop the limit on the work cost, proving that the heat dissipated is close to the minimal possible not just on average, but guaranteed with high confidence in every run. Moreover we exploit the protocol to design a quantum heat engine that works near the Carnot efficiency in finite time.Comment: 5 pages + 5 page technical appendix. 5 figures. Author accepted versio

    Maximum one-shot dissipated work from Renyi divergences

    Get PDF
    Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Renyi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.Comment: 8 pages. Close to published versio

    Introducing one-shot work into fluctuation relations

    Get PDF
    Two approaches to small-scale and quantum thermodynamics are fluctuation relations and one-shot statistical mechanics. Fluctuation relations (such as Crooks' Theorem and Jarzynski's Equality) relate nonequilibrium behaviors to equilibrium quantities such as free energy. One-shot statistical mechanics involves statements about every run of an experiment, not just about averages over trials. We investigate the relation between the two approaches. We show that both approaches feature the same notions of work and the same notions of probability distributions over possible work values. The two approaches are alternative toolkits with which to analyze these distributions. To combine the toolkits, we show how one-shot work quantities can be defined and bounded in contexts governed by Crooks' Theorem. These bounds provide a new bridge from one-shot theory to experiments originally designed for testing fluctuation theorems.Comment: 37 pages, 6 figure

    Entropic equality for worst-case work at any protocol speed

    Get PDF
    We derive an equality for non-equilibrium statistical mechanics in finite-dimensional quantum systems. The equality concerns the worst-case work output of a time-dependent Hamiltonian protocol in the presence of a Markovian heat bath. It has has the form "worst-case work = penalty - optimum". The equality holds for all rates of changing the Hamiltonian and can be used to derive the optimum by setting the penalty to 0. The optimum term contains the max entropy of the initial state, rather than the von Neumann entropy, thus recovering recent results from single-shot statistical mechanics. Energy coherences can arise during the protocol but are assumed not to be present initially. We apply the equality to an electron box.Comment: 4 page + 14 page appendix; 8 figures; AA

    A measure of majorisation emerging from single-shot statistical mechanics

    Full text link
    The use of the von Neumann entropy in formulating the laws of thermodynamics has recently been challenged. It is associated with the average work whereas the work guaranteed to be extracted in any single run of an experiment is the more interesting quantity in general. We show that an expression that quantifies majorisation determines the optimal guaranteed work. We argue it should therefore be the central quantity of statistical mechanics, rather than the von Neumann entropy. In the limit of many identical and independent subsystems (asymptotic i.i.d) the von Neumann entropy expressions are recovered but in the non-equilbrium regime the optimal guaranteed work can be radically different to the optimal average. Moreover our measure of majorisation governs which evolutions can be realized via thermal interactions, whereas the nondecrease of the von Neumann entropy is not sufficiently restrictive. Our results are inspired by single-shot information theory.Comment: 54 pages (15+39), 9 figures. Changed title / changed presentation, same main results / added minor result on pure bipartite state entanglement (appendix G) / near to published versio

    The chain rule implies Tsirelson's bound: an approach from generalized mutual information

    Full text link
    In order to analyze an information theoretical derivation of Tsirelson's bound based on information causality, we introduce a generalized mutual information (GMI), defined as the optimal coding rate of a channel with classical inputs and general probabilistic outputs. In the case where the outputs are quantum, the GMI coincides with the quantum mutual information. In general, the GMI does not necessarily satisfy the chain rule. We prove that Tsirelson's bound can be derived by imposing the chain rule on the GMI. We formulate a principle, which we call the no-supersignalling condition, which states that the assistance of nonlocal correlations does not increase the capability of classical communication. We prove that this condition is equivalent to the no-signalling condition. As a result, we show that Tsirelson's bound is implied by the nonpositivity of the quantitative difference between information causality and no-supersignalling.Comment: 23 pages, 8 figures, Added Section 2 and Appendix B, result unchanged, Added reference

    Entanglement of random vectors

    Full text link
    We analytically calculate the average value of i-th largest Schmidt coefficient for random pure quantum states. Schmidt coefficients, i.e., eigenvalues of the reduced density matrix, are expressed in the limit of large Hilbert space size and for arbitrary bipartite splitting as an implicit function of index i.Comment: 8 page

    Large Deviation Bounds for k-designs

    Full text link
    We present a technique for derandomising large deviation bounds of functions on the unitary group. We replace the Haar distribution with a pseudo-random distribution, a k-design. k-designs have the first k moments equal to those of the Haar distribution. The advantage of this is that (approximate) k-designs can be implemented efficiently, whereas Haar random unitaries cannot. We find large deviation bounds for unitaries chosen from a k-design and then illustrate this general technique with three applications. We first show that the von Neumann entropy of a pseudo-random state is almost maximal. Then we show that, if the dynamics of the universe produces a k-design, then suitably sized subsystems will be in the canonical state, as predicted by statistical mechanics. Finally we show that pseudo-random states are useless for measurement based quantum computation.Comment: 20 page

    The thermodynamic meaning of negative entropy

    Full text link
    Landauer's erasure principle exposes an intrinsic relation between thermodynamics and information theory: the erasure of information stored in a system, S, requires an amount of work proportional to the entropy of that system. This entropy, H(S|O), depends on the information that a given observer, O, has about S, and the work necessary to erase a system may therefore vary for different observers. Here, we consider a general setting where the information held by the observer may be quantum-mechanical, and show that an amount of work proportional to H(S|O) is still sufficient to erase S. Since the entropy H(S|O) can now become negative, erasing a system can result in a net gain of work (and a corresponding cooling of the environment).Comment: Added clarification on non-cyclic erasure and reversible computation (Appendix E). For a new version of all technical proofs see the Supplementary Information of the journal version (free access
    corecore