234 research outputs found

    The Role of the Euclid Archive System in the Processing of Euclid and External Data

    Get PDF
    Euclid is an ESA M2 mission which will create a 15,000 square degrees space-based survey: the Euclid Archive System (EAS) is a core element of the Science Ground Segment (SGS) of Euclid. The EAS follows a data-centric approach to data processing, whereby the Data Processing System (DPS) is responsible for the centralized metadata storage and the Distributed Storage System (DSS) supports the distributed storage of data files. The EAS-DPS implements the Euclid Common Data model and along with the EAS-DSS provides numerous services for Euclid Consortium users and SGS subsystems. In addition, the EAS-DPS assists in the preparation of Euclid data releases which are copied to the third EAS subsystem, the ESA developed Science Archive System (SAS) where they become available to the wider astronomical community. The EAS-DPS implements the object-oriented Euclid Common Data Model using a relational DBMS for the storage. The EAS-DPS supports the tracing of the lineage of any data item in the system, provides services for the data quality assessment and the data processing orchestration. The EAS-DSS is a distributed storage system which is based on a set of storage nodes located in each of the ten Science Data Centers of the Euclid SGS. The storage nodes supports a wide range of solutions from local disk, using a unix filesystem, to iRODS nodes or Grid storage elements. In this paper the architectural design of EAS-DPS and EAS-DSS are reviewed: the interaction between them and tests of the already implemented components are described

    The Euclid Archive Processing and Data Distribution Systems: A Distributed Infrastructure for Euclid and Associated Data

    Get PDF
    The Euclid Archive System is an ambitious information system, which sits at the heart of the Euclid Science Ground Segment. It is a joint development between the Euclid Consortium and the ESAC Science Data Centre. It encompases both Euclid data and the large volume of associated ground based data (e.g. KiDS, DES and LSST). The Euclid Science Ground Segment consists of the Euclid Science Operations Centre and ten national Science Data Centres. The large data volumes demand that data transfer is minimized and that the processing is taken to the data. This is supported by the Euclid Archive Data Processing System and the Euclid Archive Distributed Data System. The Data Processing System consists of a central metadata repository, which contains the information necessary to process any data item and full data lineage of any data product created. The Distributed Data System provides a cloud solution with a node at each of the national Science Data Centres, which controls data storage and transfer. It supports a large number of storage types, including POSIX, iRODS, gridftp and Xrootd. No limitations are placed on the storage implemented at an individual SDC. Further more, the user of the system needs no knowledge of where data is located. Jobs will be started at the most appropriate locations, or data transferred as necessary

    The Euclid Archive Processing and Data Distribution Systems: A Distributed Infrastructure for Euclid and Associated Data

    Get PDF
    The Euclid Archive System is an ambitious information system, which sits at the heart of the Euclid Science Ground Segment. It is a joint development between the Euclid Consortium and the ESAC Science Data Centre. It encompases both Euclid data and the large volume of associated ground based data (e.g. KiDS, DES and LSST). The Euclid Science Ground Segment consists of the Euclid Science Operations Centre and ten national Science Data Centres. The large data volumes demand that data transfer is minimized and that the processing is taken to the data. This is supported by the Euclid Archive Data Processing System and the Euclid Archive Distributed Data System. The Data Processing System consists of a central metadata repository, which contains the information necessary to process any data item and full data lineage of any data product created. The Distributed Data System provides a cloud solution with a node at each of the national Science Data Centres, which controls data storage and transfer. It supports a large number of storage types, including POSIX, iRODS, gridftp and Xrootd. No limitations are placed on the storage implemented at an individual SDC. Further more, the user of the system needs no knowledge of where data is located. Jobs will be started at the most appropriate locations, or data transferred as necessary

    The Euclid Archive Processing and Data Distribution Systems: A Distributed Infrastructure for Euclid and Associated Data

    Get PDF
    The Euclid Archive System is an ambitious information system, which sits at the heart of the Euclid Science Ground Segment. It is a joint development between the Euclid Consortium and the ESAC Science Data Centre. It encompases both Euclid data and the large volume of associated ground based data (e.g. KiDS, DES and LSST). The Euclid Science Ground Segment consists of the Euclid Science Operations Centre and ten national Science Data Centres. The large data volumes demand that data transfer is minimized and that the processing is taken to the data. This is supported by the Euclid Archive Data Processing System and the Euclid Archive Distributed Data System. The Data Processing System consists of a central metadata repository, which contains the information necessary to process any data item and full data lineage of any data product created. The Distributed Data System provides a cloud solution with a node at each of the national Science Data Centres, which controls data storage and transfer. It supports a large number of storage types, including POSIX, iRODS, gridftp and Xrootd. No limitations are placed on the storage implemented at an individual SDC. Further more, the user of the system needs no knowledge of where data is located. Jobs will be started at the most appropriate locations, or data transferred as necessary

    The Euclid Archive Processing and Data Distribution Systems: A Distributed Infrastructure for Euclid and Associated Data

    Get PDF
    The Euclid Archive System is an ambitious information system, which sits at the heart of the Euclid Science Ground Segment. It is a joint development between the Euclid Consortium and the ESAC Science Data Centre. It encompases both Euclid data and the large volume of associated ground based data (e.g. KiDS, DES and LSST). The Euclid Science Ground Segment consists of the Euclid Science Operations Centre and ten national Science Data Centres. The large data volumes demand that data transfer is minimized and that the processing is taken to the data. This is supported by the Euclid Archive Data Processing System and the Euclid Archive Distributed Data System. The Data Processing System consists of a central metadata repository, which contains the information necessary to process any data item and full data lineage of any data product created. The Distributed Data System provides a cloud solution with a node at each of the national Science Data Centres, which controls data storage and transfer. It supports a large number of storage types, including POSIX, iRODS, gridftp and Xrootd. No limitations are placed on the storage implemented at an individual SDC. Further more, the user of the system needs no knowledge of where data is located. Jobs will be started at the most appropriate locations, or data transferred as necessary

    Structure and activity of the Streptococcus pyogenes family GH1 6-phospho β-glycosidase, Spy1599

    Get PDF
    The group A streptococcus Streptococcus pyogenes is the causative agent of a wide spectrum of invasive infections, including necrotizing fasciitis, scarlet fever and toxic shock syndrome. In the context of its carbohydrate chemistry, it is interesting that S. pyogenes (in this work strain M1 GAS SF370) displays a spectrum of oligosaccharide-processing enzymes that are located in close proximity on the genome but that the in vivo function of these proteins remains unknown. These proteins include different sugar transporters (SPy1593 and SPy1595), both GH125 -1,6- and GH38 -1,3-mannosidases (SPy1603 and SPy1604), a GH84 -hexosaminidase (SPy1600) and a putative GH2 -galactosidase (SPy1586), as well as SPy1599, a family GH1 `putative -glucosidase'. Here, the solution of the three-dimensional structure of SPy1599 in a number of crystal forms complicated by unusual crystallographic twinning is reported. The structure is a classical (/)8-barrel, consistent with CAZy family GH1 and other members of the GH-A clan. SPy1599 has been annotated in sequence depositions as a -glucosidase (EC 3.2.1.21), but no such activity could be found; instead, three-dimensional structural overlaps with other enzymes of known function suggested that SPy1599 contains a phosphate-binding pocket in the active site and has possible 6-phospho--glycosidase activity. Subsequent kinetic analysis indeed showed that SPy1599 has 6-phospho--glucosidase (EC 3.2.1.86) activity. These data suggest that SPy1599 is involved in the intracellular degradation of 6-phosphoglycosides, which are likely to originate from import through one of the organism's many phosphoenolpyruvate phosphotransfer systems (PEP-PTSs)
    • …
    corecore