2,250,434 research outputs found

    Non-LTE spectral analyses of the lately discovered DB-gap white dwarfs from the SDSS

    Full text link
    For a long time, no hydrogen-deficient white dwarfs have been known that have effective temperature between 30 kK and < 45 kK, i.e. exceeding those of DB white dwarfs and having lower ones than DO white dwarfs. Therefore, this temperature range was long known as the DB-gap. Only recently, the SDSS provided spectra of several candidate DB-gap stars. First analyses based on model spectra calculated under the assumption of local thermodynamic equilibrium (LTE) confirmed that these stars had 30 kK < Teff < 45 kK (Eisenstein et al. 2006). It has been shown for DO white dwarfs that the relaxation of LTE is necessary to account for non local effects in the atmosphere caused by the intense radiation field. Therefore, we calculated a non-LTE model grid and re-analysed the aforementioned set of SDSS spectra. Our results confirm the existence of DB-gap white dwarfs.Comment: 4 pages, 2 figures, to appear in: Proceedings of the 16th European Workshop on White Dwarf

    Probability in relativistic quantum mechanics and foliation of spacetime

    Full text link
    The conserved probability densities (attributed to the conserved currents derived from relativistic wave equations) should be non-negative and the integral of them over an entire hypersurface should be equal to one. To satisfy these requirements in a covariant manner, the foliation of spacetime must be such that each integral curve of the current crosses each hypersurface of the foliation once and only once. In some cases, it is necessary to use hypersurfaces that are not spacelike everywhere. The generalization to the many-particle case is also possible.Comment: 9 pages, 3 figures, revised, new references, to appear in Int. J. Mod. Phys.

    Discovery of secular variations in the atmospheric abundances of magnetic Ap stars

    Full text link
    The stars of the middle main sequence have relatively quiescent outer layers, and unusual chemical abundance patterns may develop in their atmospheres. The presence of chemical peculiarities reveal the action of such subsurface phenomena as gravitational settling and radiatively driven levitation of trace elements, and their competition with mixing processes such as turbulent diffusion. We want to establish whether abundance peculiarities change as stars evolve on the main sequence, and provide observational constraints to diffusion theory. We have performed spectral analysis of 15 magnetic Bp stars that are members of open clusters (and thus have well-known ages), with masses between about 3 and 4 M_sun. For each star, we measured the abundances of He, O, Mg, Si, Ti, Cr, Fe, Pr and Nd. We have discovered the systematic time evolution of trace elements through the main-sequence lifetime of magnetic chemically peculiar stars as their atmospheres cool and evolve toward lower gravity. During the main sequence lifetime, we observe clear and systematic variations in the atmospheric abundances of He, Ti, Cr, Fe, Pr and Nd. For all these elements, except He, the atmospheric abundances decrease with age. The abundances of Fe-peak elements converge toward solar values, while the rare-earth elements converge toward values at least 100 times more abundant than in the Sun. Helium is always underabundant compared to the Sun, evolving from about 1% up to 10% of the solar He abundance. We have attempted to interpret the observed abundance variations in the context of radiatively driven diffusion theory, which appears to provide a framework to understand some, but not all, of the observed anomalous abundance levels and variations.Comment: 13 pages, 5 figures, 5 tables, accepted for publication in A&

    Bivariate stochastic modeling of functional response with natural mortality

    Get PDF
    A correction due to Abbott (1925) is the standard method of dealing with control mortality in insect bioassay to estimate the mortality of an insect conditional on control mortality not having occurred. In this article a bivariate stochastic process for overall mortality is developed in which natural mortality and predation are jointly modeled to take account of the competing-risks associated with prey loss. The total mortality estimate from this model is essentially identical with that from more classical modeling. However, when predation loss is estimated in the absence of control mortality the results are somewhat different, with the estimate from the bivariate model being lower than that from using Abbott’s formula in conjunction with the classical model. It is argued that overdispersion in observed mortality data corresponds to correlated outcomes (death or survival) for the prey initially present, while Abbott’s correction relies implicitly on independence

    Studies of superconductivity and structure for CaC6 to pressures above 15 GPa

    Full text link
    The dependence of the superconducting transition temperature Tc of CaC6 has been determined as a function of hydrostatic pressure in both helium-loaded gas and diamond-anvil cells to 0.6 and 32 GPa, respectively. Following an initial increase at the rate +0.39(1) K/GPa, Tc drops abruptly from 15 K to 4 K at 10 GPa. Synchrotron x-ray measurements to 15 GPa point to a structural transition near 10 GPa from a rhombohedral to a higher symmetry phase

    A dynamical systems model of unorganised segregation

    Full text link
    We consider Schelling's bounded neighbourhood model (BNM) of unorganised segregation of two populations from the perspective of modern dynamical systems theory. We derive a Schelling dynamical system and carry out a complete quantitative analysis of the system for the case of a linear tolerance schedule in both populations. In doing so, we recover and generalise Schelling's qualitative results. For the case of unlimited population movement, we derive exact formulae for regions in parameter space where stable integrated population mixes can occur. We show how neighbourhood tipping can be adequately explained in terms of basins of attraction. For the case of limiting population movement, we derive exact criteria for the occurrence of new population mixes and identify the stable cases. We show how to apply our methodology to nonlinear tolerance schedules, illustrating our approach with numerical simulations. We associate each term in our Schelling dynamical system with a social meaning. In particular we show that the dynamics of one population in the presence of another can be summarised as follows {rate of population change} = {intrinsic popularity of neighbourhood} - {finite size of neighbourhood} - {presence of other population} By approaching the dynamics from this perspective, we have a complementary approach to that of the tolerance schedule.Comment: 17 pages (inc references), 9 figure

    Nonclassical Nature of Dispersion Cancellation and Nonlocal Interferometry

    Full text link
    Several recent papers have shown that some forms of dispersion cancellation have classical analogs and that some aspects of nonlocal two-photon interferometry are consistent with local realistic models. It is noted here that the classical analogs only apply to local dispersion cancellation experiments [A.M. Steinberg et al., Phys. Rev. Lett. 68, 2421 (1992)] and that nonlocal dispersion cancellation [J.D. Franson, Phys. Rev. A 45, 3126 (1992)] is inconsistent with any classical field theory and has no classical analog. The local models that have been suggested for two-photon interferometry are shown to be local but not realistic if the spatial extent of the interferometers is taken into account. It is the inability of classical models to describe all of the relevant aspects of these experiments that distinguishes between quantum and classical physics, which is also the case in Bell's inequality.Comment: 10 pages, 8 figures; minor revisions, to appear in Phys. Rev.
    • 

    corecore