23,877 research outputs found
Polar orbit electrostatic charging of objects in shuttle wake
A survey of DMSP data has uncovered several cases where precipitating auroral electron fluxes are both sufficiently intense and energetic to charge spacecraft materials such as teflon to very large potentials in the absence of ambient ion currents. Analytical bounds are provided which show that these measured environments can cause surface potentials in excess of several hundred volts to develop on objects in the orbiter wake for particular vehicle orientations
Three-dimensional calculation of shuttle charging in polar orbit
The charged particles environment in polar orbit can be of sufficient intensity to cause spacecraft charging. In order to gain a quantitative understanding of such effects, the Air Force is developing POLAR, a computer code which simulates in three dimensions the electrical interaction of large space vehicles with the polar ionospheric plasma. It models the physical processes of wake generation, ambient ion collection, precipitating auroral electron fluxes, and surface interactions, including secondary electron generation and backscattering, which lead to vehicle charging. These processes may be followed dynamically on a subsecond timescale so that the rapid passage through intense auroral arcs can be simulated. POLAR models the ambient plasma as isotropic Maxwellian electrons and ions (0+, H+), and allows for simultaneous precipitation of power-law, energetic Maxwellian, and accelerated Gaussian distributions of electrons. Magnetic field effects will be modeled in POLAR but are currently ignored
Unzipping an adsorbed polymer in a dirty or random environment
The phase diagram of unzipping of an adsorbed directed polymer in two
dimensions in a random medium has been determined. Both the hard-wall and the
soft-wall cases are considered. Exact solutions for the pure problem with
different affinities on the two sides are given. The results obtained by the
numerical procedure adopted here are shown to agree with the exact results for
the pure case. The characteristic exponents for unzipping for the random
problem are different from the pure case. The distribution functions for the
unzipped length, first bubble, and the spacer are determined.Comment: Published version, uses revtex4, 14 page
Two-Photon Beatings Using Biphotons Generated from a Two-Level System
We propose a two-photon beating experiment based upon biphotons generated
from a resonant pumping two-level system operating in a backward geometry. On
the one hand, the linear optical-response leads biphotons produced from two
sidebands in the Mollow triplet to propagate with tunable refractive indices,
while the central-component propagates with unity refractive index. The
relative phase difference due to different refractive indices is analogous to
the pathway-length difference between long-long and short-short in the original
Franson interferometer. By subtracting the linear Rayleigh scattering of the
pump, the visibility in the center part of the two-photon beating interference
can be ideally manipulated among [0, 100%] by varying the pump power, the
material length, and the atomic density, which indicates a Bell-type inequality
violation. On the other hand, the proposed experiment may be an interesting way
of probing the quantum nature of the detection process. The interference will
disappear when the separation of the Mollow peaks approaches the fundamental
timescales for photon absorption in the detector.Comment: to appear in Phys. Rev. A (2008
Open Questions in Classical Gravity
We discuss some outstanding open questions regarding the validity and
uniqueness of the standard second order Newton-Einstein classical gravitational
theory. On the observational side we discuss the degree to which the realm of
validity of Newton's Law of Gravity can actually be extended to distances much
larger than the solar system distance scales on which the law was originally
established. On the theoretical side we identify some commonly accepted but
actually still open to question assumptions which go into the formulating of
the standard second order Einstein theory in the first place. In particular, we
show that while the familiar second order Poisson gravitational equation (and
accordingly its second order covariant Einstein generalization) may be
sufficient to yield Newton's Law of Gravity they are not in fact necessary. The
standard theory thus still awaits the identification of some principle which
would then make it necessary too. We show that current observational
information does not exclusively mandate the standard theory, and that the
conformal invariant fourth order theory of gravity considered recently by
Mannheim and Kazanas is also able to meet the constraints of data, and in fact
to do so without the need for any so far unobserved non-luminous or dark
matter.Comment: UCONN-93-1, plain TeX format, 22 pages (plus 7 figures - send
requests to [email protected]). To appear in a special issue of
Foundations of Physics honoring Professor Fritz Rohrlich on the occasion of
his retirement, L. P. Horwitz and A. van der Merwe Editors, Plenum Publishing
Company, N.Y., Fall 199
Ghost Interference with Optical Parametric Amplifier
The 'Ghost' interference experiment is analyzed when the source of entangled
photons is a multimode Optical Parametric Amplifier(OPA) whose weak limit is
the two-photon Spontaneous Parametric Downconversion(SPDC) beam. The visibility
of the double-slit pattern is calculated, taking the finite coincidence time
window of the photon counting detectors into account. It is found that the
coincidence window and the bandwidth of light reaching the detectors play a
crucial role in the loss of visibility on coincidence detection, not only in
the 'Ghost' interference experiment but in all experiments involving
coincidence detection. The differences between the loss of visibility with
two-mode and multimode OPA sources is also discussed.
PACS: 42.65.Yj, 42.50.Dv, 42.65.L
Michaelis-Menten dynamics in protein subnetworks
To understand the behaviour of complex systems it is often necessary to use
models that describe the dynamics of subnetworks. It has previously been
established using projection methods that such subnetwork dynamics generically
involves memory of the past, and that the memory functions can be calculated
explicitly for biochemical reaction networks made up of unary and binary
reactions. However, many established network models involve also
Michaelis-Menten kinetics, to describe e.g. enzymatic reactions. We show that
the projection approach to subnetwork dynamics can be extended to such
networks, thus significantly broadening its range of applicability. To derive
the extension we construct a larger network that represents enzymes and enzyme
complexes explicitly, obtain the projected equations, and finally take the
limit of fast enzyme reactions that gives back Michaelis-Menten kinetics. The
crucial point is that this limit can be taken in closed form. The outcome is a
simple procedure that allows one to obtain a description of subnetwork
dynamics, including memory functions, starting directly from any given network
of unary, binary and Michaelis-Menten reactions. Numerical tests show that this
closed form enzyme elimination gives a much more accurate description of the
subnetwork dynamics than the simpler method that represents enzymes explicitly,
and is also more efficient computationally
- …