3,083 research outputs found
Dynamical Structure of the Molecular Interstellar Medium in an Extremely Bright, Multiply Lensed z â 3 Submillimeter Galaxy Discovered with Herschel
We report the detection of CO(J = 5 â 4), CO(J = 3 â 2), and CO(J = 1 â 0) emission in the strongly lensed, Herschel/SPIRE-selected submillimeter galaxy (SMG) HERMES J105751.1+573027 at z = 2.9574 ± 0.0001, using the Plateau de Bure Interferometer, the Combined Array for Research in Millimeter-wave Astronomy, and the Green Bank Telescope. The observations spatially resolve the molecular gas into four lensed images with a maximum separation of ~9" and reveal the internal gas dynamics in this system. We derive lensing-corrected CO line luminosities of L'_(CO(1-0)) = (4.17 ± 0.41), L'_(CO(3-2)) = (3.96 ± 0.20), and L'_(CO(5-4)) = (3.45 ± 0.20) Ă 10^(10) (ÎŒL/10.9)^(â1) K km s^(â1) pc^2, corresponding to luminosity ratios of r_(31) = 0.95 ± 0.10, r_(53) = 0.87 ± 0.06, and r_(51) = 0.83 ± 0.09. This suggests a total molecular gas mass of M_(gas) = 3.3Ă10^(10) (α_(CO)/0.8) (ÎŒ_L/10.9)^(â1) M_â. The gas mass, gas mass fraction, gas depletion timescale, star formation efficiency, and specific star formation rate are typical for an SMG. The velocity structure of the gas reservoir suggests that the brightest two lensed images are dynamically resolved projections of the same dust-obscured region in the galaxy that are kinematically offset from the unresolved fainter images. The resolved kinematics appear consistent with the complex velocity structure observed in major, "wet" (i.e., gas-rich) mergers. Major mergers are commonly observed in SMGs and are likely to be responsible for fueling their intense starbursts at high gas consumption rates. This study demonstrates the level of detail to which galaxies in the early universe can be studied by utilizing the increase in effective spatial resolution and sensitivity provided by gravitational lensing
The far-infrared/submillimeter properties of galaxies located behind the Bullet cluster
The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100â500 ÎŒm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 ÎŒm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 ÎŒm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales
The Herschel Lensing Survey (HLS): Overview
The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of âŒ40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate limit on our ability to probe the
Universe with Herschel. Here we present an overview of our survey and a summary of the major results from our science demonstration phase (SDP) observations of the Bullet cluster (z = 0.297). The SDP data are rich and allow us to study not only the background high-redshift galaxies
(e.g., strongly lensed and distorted galaxies at z = 2.8 and 3.2) but also the properties of cluster-member galaxies. Our preliminary analysis shows a great diversity of far-infrared/submillimeter spectral energy distributions (SEDs), indicating that we have much to learn with Herschel about the properties of galaxy SEDs. We have also detected the Sunyaev-Zelâdovich (SZ) effect increment with the SPIRE data. The success of this SDP program demonstrates the great potential of the Herschel Lensing Survey to produce exciting results in a variety of science areas
A Multi-Wavelength Study of Sgr A*: The Role of Near-IR Flares in Production of X-ray, Soft -ray and Sub-millimeter Emission
(abridged) We describe highlights of the results of two observing campaigns
in 2004 to investigate the correlation of flare activity in Sgr A* in different
wavelength regimes, using a total of nine ground and space-based telescopes. We
report the detection of several new near-IR flares during the campaign based on
{\it HST} observations. The level of near-IR flare activity can be as low as
mJy at 1.6 m and continuous up to about 40% of the total
observing time. Using the NICMOS instrument on the {\it HST}, the {\it
XMM-Newton} and CSO observatories, we also detect simultaneous bright X-ray and
near-IR flare in which we observe for the first time correlated substructures
as well as simultaneous submillimeter and near-IR flaring. X-ray emission is
arising from the population of near-IR-synchrotron-emitting relativistic
particles which scatter submillimeter seed photons within the inner 10
Schwarzschild radii of Sgr A* up to X-ray energies. In addition, using the
inverse Compton scattering picture, we explain the high energy 20-120 keV
emission from the direction toward Sgr A*, and the lack of one-to-one X-ray
counterparts to near-IR flares, by the variation of the magnetic field and the
spectral index distributions of this population of nonthermal particles. In
this picture, the evidence for the variability of submillimeter emission during
a near-IR flare is produced by the low-energy component of the population of
particles emitting synchrotron near-IR emission. Based on the measurements of
the duration of flares in near-IR and submillimeter wavelengths, we argue that
the cooling could be due to adiabatic expansion with the implication that flare
activity may drive an outflow.Comment: 48 pages, 12 figures, ApJ (in press
Deep Herschel view of obscured star formation in the Bullet cluster
We use deep, five band (100â500 ÎŒm) data from the Herschel Lensing Survey (HLS) to fully constrain the obscured star formation rate, SFR_(FIR), of galaxies in the Bullet cluster (z = 0.296), and a smaller background system (z = 0.35) in the same field. Herschel detects 23 Bullet cluster members with a total SFRFIR = 144±14 M_â yr^(-1). On average, the background system contains brighter far-infrared (FIR) galaxies, with ~50% higher SFRFIR (21 galaxies; 207 ± 9 M_â yr^(-1)). SFRs extrapolated from 24 ÎŒm flux via recent templates (SFR_(24 ”m)) agree well with SFRFIR for ~60% of the cluster galaxies. In the remaining ~40%, SFR24 ”m underestimates SFR_(FIR) due to a significant excess in observed S_(100)/S_(24) (rest frame S_(75)/S_(18)) compared to templates of the same FIR luminosity
Redshift Determination and CO Line Excitation Modeling for the Multiply Lensed Galaxy HLSW-01
We report on the redshift measurement and CO line excitation of HERMES J105751.1+573027 (HLSW-01), a strongly lensed submillimeter galaxy discovered in Herschel/SPIRE observations as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). HLSW-01 is an ultra-luminous galaxy with an intrinsic far-infrared luminosity of L _(FIR) = 1.4 Ă 10^(13) L _â, and is lensed by a massive group of galaxies into at least four images with a total magnification of ÎŒ = 10.9 ± 0.7. With the 100 GHz instantaneous bandwidth of the Z-Spec instrument on the Caltech Submillimeter Observatory, we robustly identify a redshift of z = 2.958 ± 0.007 for this source, using the simultaneous detection of four CO emission lines (J = 7 â 6, J = 8 â 7, J = 9 â 8, and J = 10 â 9). Combining the measured line fluxes for these high-J transitions with the J = 1 â 0, J = 3 â 2, and J = 5 â 4 line fluxes measured with the Green Bank Telescope, the Combined Array for Research in Millimeter Astronomy, and the Plateau de Bure Interferometer, respectively, we model the physical properties of the molecular gas in this galaxy. We find that the full CO spectral line energy distribution is described well by warm, moderate-density gas with T _(kin) = 86-235 K and n_H_2 = (1.1-3.5)x10^3 cm^(â3). However, it is possible that the highest-J transitions are tracing a small fraction of very dense gas in molecular cloud cores, and two-component models that include a warm/dense molecular gas phase with T _(kin) ~ 200 K, n_H_2 ~ 10^5 cm^(â3) are also consistent with these data. Higher signal-to-noise measurements of the J _(up) â„ 7 transitions with high spectral resolution, combined with high spatial resolution CO maps, are needed to improve our understanding of the gas excitation, morphology, and dynamics of this interesting high-redshift galaxy
Submillimeter Imaging of NGC 891 with SHARC
The advent of submillimeter wavelength array cameras operating on large
ground-based telescopes is revolutionizing imaging at these wavelengths,
enabling high-resolution submillimeter surveys of dust emission in star-forming
regions and galaxies. Here we present a recent 350 micron image of the edge-on
galaxy NGC 891, which was obtained with the Submillimeter High Angular
Resolution Camera (SHARC) at the Caltech Submillimeter Observatory (CSO). We
find that high resolution submillimeter data is a vital complement to shorter
wavelength satellite data, which enables a reliable separation of the cold dust
component seen at millimeter wavelengths from the warmer component which
dominates the far-infrared (FIR) luminosity.Comment: 4 pages LaTeX, 2 EPS figures, with PASPconf.sty; to appear in
"Astrophysics with Infrared Surveys: A Prelude to SIRTF
Exploring mobile news reading interactions for news app personalisation
As news is increasingly accessed on smartphones and tablets, the need for personalising news app interactions is apparent. We report a series of three studies addressing key issues in the development of adaptive news app interfaces. We first surveyed users' news reading preferences and behaviours; analysis revealed three primary types of reader. We then implemented and deployed an Android news app that logs users' interactions with the app. We used the logs to train a classifier and showed that it is able to reliably recognise a user according to their reader type. Finally we evaluated alternative, adaptive user interfaces for each reader type. The evaluation demonstrates the differential benefit of the adaptation for different users of the news app and the feasibility of adaptive interfaces for news apps
- âŠ