2,427,026 research outputs found

    Is there a prescribed parameter's space for the adiabatic geometric phase?

    Full text link
    The Aharonov-Anandan and Berry phases are determined for the cyclic motions of a non-relativistic charged spinless particle evolving in the superposition of the fields produced by a Penning trap and a rotating magnetic field. Discussion about the selection of the parameter's space and the relationship between the Berry phase and the symmetry of the binding potential is given.Comment: 7 pages, 2 figure

    Geodesic boundary value problems with symmetry

    Full text link
    This paper shows how left and right actions of Lie groups on a manifold may be used to complement one another in a variational reformulation of optimal control problems equivalently as geodesic boundary value problems with symmetry. We prove an equivalence theorem to this effect and illustrate it with several examples. In finite-dimensions, we discuss geodesic flows on the Lie groups SO(3) and SE(3) under the left and right actions of their respective Lie algebras. In an infinite-dimensional example, we discuss optimal large-deformation matching of one closed curve to another embedded in the same plane. In the curve-matching example, the manifold \Emb(S^1, \mathbb{R}^2) comprises the space of closed curves S1S^1 embedded in the plane R2\mathbb{R}^2. The diffeomorphic left action \Diff(\mathbb{R}^2) deforms the curve by a smooth invertible time-dependent transformation of the coordinate system in which it is embedded, while leaving the parameterisation of the curve invariant. The diffeomorphic right action \Diff(S^1) corresponds to a smooth invertible reparameterisation of the S1S^1 domain coordinates of the curve. As we show, this right action unlocks an important degree of freedom for geodesically matching the curve shapes using an equivalent fixed boundary value problem, without being constrained to match corresponding points along the template and target curves at the endpoint in time.Comment: First version -- comments welcome

    Landscape influence on small-scale water temperature variations in a moorland catchment

    Get PDF
    Acknowledgements Iain Malcolm and staff at Marine Scotland (Pitlochry) are thanked for the provision of data from the AWS. Finally, the two anonymous reviewers are greatly acknowledged for their constructive comments.Peer reviewedPostprin

    Gauge covariance and the fermion-photon vertex in three- and four- dimensional, massless quantum electrodynamics

    Full text link
    In the quenched approximation, the gauge covariance properties of three vertex Ans\"{a}tze in the Schwinger-Dyson equation for the fermion self energy are analysed in three- and four- dimensional quantum electrodynamics. Based on the Cornwall-Jackiw-Tomboulis effective action, it is inferred that the spectral representation used for the vertex in the gauge technique cannot support dynamical chiral symmetry breaking. A criterion for establishing whether a given Ansatz can confer gauge covariance upon the Schwinger-Dyson equation is presented and the Curtis and Pennington Ansatz is shown to satisfy this constraint. We obtain an analytic solution of the Schwinger-Dyson equation for quenched, massless three-dimensional quantum electrodynamics for arbitrary values of the gauge parameter in the absence of dynamical chiral symmetry breaking.Comment: 17 pages, PHY-7143-TH-93, REVTE
    corecore