17,230 research outputs found
On Sasaki-Einstein manifolds in dimension five
We prove the existence of Sasaki-Einstein metrics on certain simply connected
5-manifolds where until now existence was unknown. All of these manifolds have
non-trivial torsion classes. On several of these we show that there are a
countable infinity of deformation classes of Sasaki-Einstein structures.Comment: 18 pages, Exposition was expanded and a reference adde
The water-cryogen heat exchanger
Heat exchanger, using water as heat medium, converts liquid hydrogen to gaseous hydrogen at a very high rate. Possible applications include treatment of liquified natural gas in cities to bring the gas on-line quickly, conversion of liquid oxygen and liquid nitrogen for steel mills, and high volume inert purging
Darwin-Lagrangian Analysis for the Interaction of a Point Charge and a Magnet: Considerations Related to the Controversy Regarding the Aharonov-Bohm and Aharonov-Casher Phase Shifts
The classical electromagnetic interaction of a point charge and a magnet is
discussed by first calculating the interaction of point charge with a simple
model magnetic moment and then suggesting a multiparticle limit. The Darwin
Lagrangian is used to analyze the electromagnetic behavior of the model
magnetic moment (composed of two oppositely charged particles of different mass
in an initially circular orbit) interacting with a passing point charge. The
changing mangetic moment is found to put a force back on a passing charge; this
force is of order 1/c^2 and depends upon the magnitude of the magnetic moment.
It is suggested that in the limit of a multiparticle magnetic toroid, the
electric fields of the passing charge are screened out of the body of the
magnet while the magnetic fields penetrate into the magnet. This is consistent
with our understanding of the penetration of electromagnetic velocity fields
into ohmic conductors. Conservation laws are discussed. The work corresponds to
a classical electromagnetic analysis of the interaction which is basic to
understanding the controversy over the Aharonov-Bohm and Aharonov-Casher phase
shifts and represents a refutation of the suggestions of Aharonov, Pearle, and
Vaidman.Comment: 33 page
Deoxygenation of organic nitrites
Organic nitrites deoxygenated in presence of tervalent phosphorus reagent
Scaling Symmetries of Scatterers of Classical Zero-Point Radiation
Classical radiation equilibrium (the blackbody problem) is investigated by
the use of an analogy. Scaling symmetries are noted for systems of classical
charged particles moving in circular orbits in central potentials V(r)=-k/r^n
when the particles are held in uniform circular motion against radiative
collapse by a circularly polarized incident plane wave. Only in the case of a
Coulomb potential n=1 with fixed charge e is there a unique scale-invariant
spectrum of radiation versus frequency (analogous to zero-point radiation)
obtained from the stable scattering arrangement. These results suggest that
non-electromagnetic potentials are not appropriate for discussions of classical
radiation equilibrium.Comment: 13 page
Elements of Design for Containers and Solutions in the LinBox Library
We describe in this paper new design techniques used in the \cpp exact linear
algebra library \linbox, intended to make the library safer and easier to use,
while keeping it generic and efficient. First, we review the new simplified
structure for containers, based on our \emph{founding scope allocation} model.
We explain design choices and their impact on coding: unification of our matrix
classes, clearer model for matrices and submatrices, \etc Then we present a
variation of the \emph{strategy} design pattern that is comprised of a
controller--plugin system: the controller (solution) chooses among plug-ins
(algorithms) that always call back the controllers for subtasks. We give
examples using the solution \mul. Finally we present a benchmark architecture
that serves two purposes: Providing the user with easier ways to produce
graphs; Creating a framework for automatically tuning the library and
supporting regression testing.Comment: 8 pages, 4th International Congress on Mathematical Software, Seoul :
Korea, Republic Of (2014
The Paradoxical Forces for the Classical Electromagnetic Lag Associated with the Aharonov-Bohm Phase Shift
The classical electromagnetic lag assocated with the Aharonov-Bohm phase
shift is obtained by using a Darwin-Lagrangian analysis similar to that given
by Coleman and Van Vleck to identify the puzzling forces of the Shockley-James
paradox. The classical forces cause changes in particle velocities and so
produce a relative lag leading to the same phase shift as predicted by Aharonov
and Bohm and observed in experiments. An experiment is proposed to test for
this lag aspect implied by the classical analysis but not present in the
currently-accepted quantum topological description of the phase shift.Comment: 8 pages, 3 figure
Deeply subrecoil two-dimensional Raman cooling
We report the implementation of a two-dimensional Raman cooling scheme using
sequential excitations along the orthogonal axes. Using square pulses, we have
cooled a cloud of ultracold Cesium atoms down to an RMS velocity spread of
0.39(5) recoil velocity, corresponding to an effective temperature of 30 nK
(0.15 T_rec). This technique can be useful to improve cold atom atomic clocks,
and is particularly relevant for clocks in microgravity.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation
By numerical calculation, the Planck spectrum with zero-point radiation is
shown to satisfy a natural maximum-entropy principle whereas alternative
choices of spectra do not. Specifically, if we consider a set of
conducting-walled boxes, each with a partition placed at a different location
in the box, so that across the collection of boxes the partitions are uniformly
spaced across the volume, then the Planck spectrum correspond to that spectrum
of random radiation (having constant energy kT per normal mode at low
frequencies and zero-point energy (1/2)hw per normal mode at high frequencies)
which gives maximum uniformity across the collection of boxes for the radiation
energy per box. The analysis involves Casimir energies and zero-point radiation
which do not usually appear in thermodynamic analyses. For simplicity, the
analysis is presented for waves in one space dimension.Comment: 11 page
- …
