247 research outputs found

    Exact Half-BPS Flux Solutions in M-theory III: Existence and rigidity of global solutions asymptotic to AdS4 x S7

    Full text link
    The BPS equations in M-theory for solutions with 16 residual supersymmetries, SO(2,2)×SO(4)×SO(4)SO(2,2)\times SO(4)\times SO(4) symmetry, and AdS4×S7AdS_4 \times S^7 asymptotics, were reduced in [arXiv:0806.0605] to a linear first order partial differential equation on a Riemann surface with boundary, subject to a non-trivial quadratic constraint. In the present paper, suitable regularity and boundary conditions are imposed for the existence of global solutions. We seek regular solutions with multiple distinct asymptotic AdS4×S7AdS_4 \times S^7 regions, but find that, remarkably, such solutions invariably reduce to multiple covers of the M-Janus solution found by the authors in [arXiv:0904.3313], suggesting rigidity of the half-BPS M-Janus solution. In particular, we prove analytically that no other smooth deformations away from the M-Janus solution exist, as such deformations invariably violate the quadratic constraint. These rigidity results are contrasted to the existence of half-BPS solutions with non-trivial 4-form fluxes and charges asymptotic to AdS7×S4AdS_7 \times S^4. The results are related to the possibility of M2-branes to end on M5-branes, but the impossibility of M5-branes to end on M2-branes, and to the non-existence of half-BPS solutions with simultaneous AdS4×S7AdS_4 \times S^7 and AdS7×S4AdS_7 \times S^4 asymptotic regions.Comment: 52 pages, 2 figures, pdf-latex. Minor change

    Gravity duals of half-BPS Wilson loops

    Full text link
    We explicitly construct the fully back-reacted half-BPS solutions in Type IIB supergravity which are dual to Wilson loops with 16 supersymmetries in N=4\mathcal{N}=4 super Yang-Mills. In a first part, we use the methods of a companion paper to derive the exact general solution of the half-BPS equations on the space AdS2×S2×S4×ΣAdS_2 \times S^2 \times S^4 \times \Sigma, with isometry group SO(2,1)×SO(3)×SO(5)SO(2,1)\times SO(3) \times SO(5) in terms of two locally harmonic functions on a Riemann surface Σ\Sigma with boundary. These solutions, generally, have varying dilaton and axion, and non-vanishing 3-form fluxes. In a second part, we impose regularity and topology conditions. These non-singular solutions may be parametrized by a genus g0g \geq 0 hyperelliptic surface Σ\Sigma, all of whose branch points lie on the real line. Each genus gg solution has only a single asymptotic AdS5×S5AdS_5 \times S^5 region, but exhibits gg homology 3-spheres, and an extra gg homology 5-spheres, carrying respectively RR 3-form and RR 5-form charges. For genus 0, we recover AdS5×S5AdS_5 \times S^5 with 3 free parameters, while for genus g1g \geq 1, the solution has 2g+52g+5 free parameters. The genus 1 case is studied in detail. Numerical analysis is used to show that the solutions are regular throughout the g=1g=1 parameter space. Collapse of a branch cut on Σ\Sigma subtending either a homology 3-sphere or a homology 5-sphere is non-singular and yields the genus g1g-1 solution. This behavior is precisely expected of a proper dual to a Wilson loop in gauge theory.Comment: 62 pages, LaTeX, 6 figures, v2: minor change

    Nonperturbative Matching for Field Theories with Heavy Fermions

    Full text link
    We examine a paradox, suggested by Banks and Dabholkar, concerning nonperturbative effects in an effective field theory which is obtained by integrating out a generation of heavy fermions, where the heavy fermion masses arise from Yukawa couplings. They argue that light fermions in the effective theory appear to decay via instanton processes, whereas their decay is forbidden in the full theory. We resolve this paradox by showing that such processes in fact do not occur in the effective theory, due to matching corrections which cause the relevant light field configurations to have infinite action.Comment: 10 pages, no figures, uses harvmac, Harvard University Preprint HUTP-93/A03

    Dispersion Relations in String Theory

    Full text link
    We analyze the analytic continuation of the formally divergent one-loop amplitude for scattering of the graviton multiplet in the Type II Superstring. In particular we obtain explicit double and single dispersion relations, formulas for all the successive branch cuts extending out to plus infinity, as well as for the decay rate of a massive string state of arbitrary mass 2N into two string states of lower mass. We compare our results with the box diagram in a superposition of ϕ3\phi^3-like field theories. The stringy effects are traced to a convergence problem in this superposition.Comment: 17 pages, COLUMBIA-YITP-UCLA/93/TEP/45 (figures fixed up

    Exact half-BPS Type IIB interface solutions I: Local solution and supersymmetric Janus

    Full text link
    The complete Type IIB supergravity solutions with 16 supersymmetries are obtained on the manifold AdS4×S2×S2×ΣAdS_4 \times S^2 \times S^2 \times \Sigma with SO(2,3)×SO(3)×SO(3)SO(2,3) \times SO(3) \times SO(3) symmetry in terms of two holomorphic functions on a Riemann surface Σ\Sigma, which generally has a boundary. This is achieved by reducing the BPS equations using the above symmetry requirements, proving that all solutions of the BPS equations solve the full Type IIB supergravity field equations, mapping the BPS equations onto a new integrable system akin to the Liouville and Sine-Gordon theories, and mapping this integrable system to a linear equation which can be solved exactly. Amongst the infinite class of solutions, a non-singular Janus solution is identified which provides the AdS/CFT dual of the maximally supersymmetric Yang-Mills interface theory discovered recently. The construction of general classes of globally non-singular solutions, including fully back-reacted AdS5×S5AdS_5 \times S^5 and supersymmetric Janus doped with D5 and/or NS5 branes, is deferred to a companion paper.Comment: LaTeX, 69 pages, 3 figures, v2: references adde

    Three-Point Functions of Quarter BPS Operators in N=4 SYM

    Get PDF
    In a recent paper hep-th/0109064, quarter-BPS chiral primaries were constructed in the fully interacting four dimensional N=4 Super-Yang-Mills theory with gauge group SU(N). These operators are annihilated by four supercharges, and at order g^2 have protected scaling dimension and normalization. Here, we compute three-point functions involving these quarter-BPS operators along with half-BPS operators. The combinatorics of the problem is rather involved, and we consider the following special cases: (1) correlators of two half-BPS primaries with an arbitrary chiral primary; (2) certain classes of and < quarter quarter quarter > three-point functions; (3) three-point functions involving the Delta correlators with the special quarter-BPS operator made of single and double trace operators only. The analysis in cases (1)-(3) is valid for general N, while (4) is a large N approximation. Order g^2 corrections to all three-point functions considered in this paper are found to vanish. In the AdS/CFT correspondence, quarter-BPS chiral primaries are dual to threshold bound states of elementary supergravity excitations. We present a supergravity discussion of two- and three-point correlators involving these bound states.Comment: 44 pages, Latex, eps figures, uses epsfig.sty; references adde

    Janus within Janus

    Full text link
    We found a simple and interesting generalization of the non-supersymmetric Janus solution in type IIB string theory. The Janus solution can be thought of as a thick AdS_d-sliced domain wall in AdS_{d+1} space. It turns out that the AdS_d-sliced domain wall can support its own AdS_{d-1}-sliced domain wall within it. Indeed this pattern persists further until it reaches the AdS_2-slice of the domain wall within self-similar AdS_{p (2<p\le d)}-sliced domain walls. In other words the solution represents a sequence of little Janus nested in the interface of the parent Janus according to a remarkably simple ``nesting'' rule. Via the AdS/CFT duality, the dual gauge theory description is in general an interface CFT of higher codimensions.Comment: 15 pages, 6 figures, v2 references added. v3 eq.(3.33) correcte

    The One-Loop Five-Graviton Scattering Amplitude and Its Low-Energy Limit

    Full text link
    A covariant path integral calculation of the even spin structure contribution to the one-loop N-graviton scattering amplitude in the type-II superstring theory is presented. The apparent divergence of the N=5N=5 amplitude is resolved by separating it into twelve independent terms corresponding to different orders of inserting the graviton vertex operators. Each term is well defined in an appropriate kinematic region and can be analytically continued to physical regions where it develops branch cuts required by unitarity. The zero-slope limit of the N=5N=5 amplitude is performed, and the Feynman diagram content of the low-energy field theory is examined. Both one-particle irreducible (1PI) and one-particle redicible (1PR) graphs with massless internal states are generated in this limit. One set of 1PI graphs has the same divergent dependence on the cut-off as that found in the four-graviton case, and it is proved that such graphs exist for all~NN. The 1PR graphs are contributed by the poles in the world-sheet chiral Green functions.Comment: 23 pages, ITP-SB-92-6

    Two-Loop String Theory on Null Compactifications

    Full text link
    We compute the two-loop contributions to the free energy in the null compactification of perturbative string theory at finite temperature. The cases of bosonic, Type II and heterotic strings are all treated. The calculation exploits an explicit reductive parametrization of the moduli space of infinite-momentum frame string worldsheets in terms of branched cover instantons. Various arithmetic and physical properties of the instanton sums are described. Applications to symmetric product orbifold conformal field theories and to the matrix string theory conjecture are also briefly discussed.Comment: 41 pages, 1 figur
    corecore